You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							150 lines
						
					
					
						
							6.3 KiB
						
					
					
				
			
		
		
	
	
							150 lines
						
					
					
						
							6.3 KiB
						
					
					
				// Ceres Solver - A fast non-linear least squares minimizer
 | 
						|
// Copyright 2015 Google Inc. All rights reserved.
 | 
						|
// http://ceres-solver.org/
 | 
						|
//
 | 
						|
// Redistribution and use in source and binary forms, with or without
 | 
						|
// modification, are permitted provided that the following conditions are met:
 | 
						|
//
 | 
						|
// * Redistributions of source code must retain the above copyright notice,
 | 
						|
//   this list of conditions and the following disclaimer.
 | 
						|
// * Redistributions in binary form must reproduce the above copyright notice,
 | 
						|
//   this list of conditions and the following disclaimer in the documentation
 | 
						|
//   and/or other materials provided with the distribution.
 | 
						|
// * Neither the name of Google Inc. nor the names of its contributors may be
 | 
						|
//   used to endorse or promote products derived from this software without
 | 
						|
//   specific prior written permission.
 | 
						|
//
 | 
						|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 | 
						|
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 | 
						|
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 | 
						|
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
 | 
						|
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 | 
						|
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 | 
						|
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 | 
						|
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 | 
						|
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 | 
						|
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 | 
						|
// POSSIBILITY OF SUCH DAMAGE.
 | 
						|
// Copyright 2007 Google Inc. All Rights Reserved.
 | 
						|
//
 | 
						|
// Authors: wjr@google.com (William Rucklidge),
 | 
						|
//          keir@google.com (Keir Mierle),
 | 
						|
//          dgossow@google.com (David Gossow)
 | 
						|
 | 
						|
#ifndef CERES_PUBLIC_GRADIENT_CHECKER_H_
 | 
						|
#define CERES_PUBLIC_GRADIENT_CHECKER_H_
 | 
						|
 | 
						|
#include <vector>
 | 
						|
#include <string>
 | 
						|
 | 
						|
#include "ceres/cost_function.h"
 | 
						|
#include "ceres/dynamic_numeric_diff_cost_function.h"
 | 
						|
#include "ceres/internal/eigen.h"
 | 
						|
#include "ceres/internal/fixed_array.h"
 | 
						|
#include "ceres/internal/macros.h"
 | 
						|
#include "ceres/internal/scoped_ptr.h"
 | 
						|
#include "ceres/local_parameterization.h"
 | 
						|
#include "glog/logging.h"
 | 
						|
 | 
						|
namespace ceres {
 | 
						|
 | 
						|
// GradientChecker compares the Jacobians returned by a cost function against
 | 
						|
// derivatives estimated using finite differencing.
 | 
						|
//
 | 
						|
// The condition enforced is that
 | 
						|
//
 | 
						|
//    (J_actual(i, j) - J_numeric(i, j))
 | 
						|
//   ------------------------------------  <  relative_precision
 | 
						|
//   max(J_actual(i, j), J_numeric(i, j))
 | 
						|
//
 | 
						|
// where J_actual(i, j) is the jacobian as computed by the supplied cost
 | 
						|
// function (by the user) multiplied by the local parameterization Jacobian
 | 
						|
// and J_numeric is the jacobian as computed by finite differences, multiplied
 | 
						|
// by the local parameterization Jacobian as well.
 | 
						|
//
 | 
						|
// How to use: Fill in an array of pointers to parameter blocks for your
 | 
						|
// CostFunction, and then call Probe(). Check that the return value is 'true'.
 | 
						|
class CERES_EXPORT GradientChecker {
 | 
						|
 public:
 | 
						|
  // This will not take ownership of the cost function or local
 | 
						|
  // parameterizations.
 | 
						|
  //
 | 
						|
  // function: The cost function to probe.
 | 
						|
  // local_parameterization: A vector of local parameterizations for each
 | 
						|
  // parameter. May be NULL or contain NULL pointers to indicate that the
 | 
						|
  // respective parameter does not have a local parameterization.
 | 
						|
  // options: Options to use for numerical differentiation.
 | 
						|
  GradientChecker(
 | 
						|
      const CostFunction* function,
 | 
						|
      const std::vector<const LocalParameterization*>* local_parameterizations,
 | 
						|
      const NumericDiffOptions& options);
 | 
						|
 | 
						|
  // Contains results from a call to Probe for later inspection.
 | 
						|
  struct CERES_EXPORT ProbeResults {
 | 
						|
    // The return value of the cost function.
 | 
						|
    bool return_value;
 | 
						|
 | 
						|
    // Computed residual vector.
 | 
						|
    Vector residuals;
 | 
						|
 | 
						|
    // The sizes of the Jacobians below are dictated by the cost function's
 | 
						|
    // parameter block size and residual block sizes. If a parameter block
 | 
						|
    // has a local parameterization associated with it, the size of the "local"
 | 
						|
    // Jacobian will be determined by the local parameterization dimension and
 | 
						|
    // residual block size, otherwise it will be identical to the regular
 | 
						|
    // Jacobian.
 | 
						|
 | 
						|
    // Derivatives as computed by the cost function.
 | 
						|
    std::vector<Matrix> jacobians;
 | 
						|
 | 
						|
    // Derivatives as computed by the cost function in local space.
 | 
						|
    std::vector<Matrix> local_jacobians;
 | 
						|
 | 
						|
    // Derivatives as computed by nuerical differentiation in local space.
 | 
						|
    std::vector<Matrix> numeric_jacobians;
 | 
						|
 | 
						|
    // Derivatives as computed by nuerical differentiation in local space.
 | 
						|
    std::vector<Matrix> local_numeric_jacobians;
 | 
						|
 | 
						|
    // Contains the maximum relative error found in the local Jacobians.
 | 
						|
    double maximum_relative_error;
 | 
						|
 | 
						|
    // If an error was detected, this will contain a detailed description of
 | 
						|
    // that error.
 | 
						|
    std::string error_log;
 | 
						|
  };
 | 
						|
 | 
						|
  // Call the cost function, compute alternative Jacobians using finite
 | 
						|
  // differencing and compare results. If local parameterizations are given,
 | 
						|
  // the Jacobians will be multiplied by the local parameterization Jacobians
 | 
						|
  // before performing the check, which effectively means that all errors along
 | 
						|
  // the null space of the local parameterization will be ignored.
 | 
						|
  // Returns false if the Jacobians don't match, the cost function return false,
 | 
						|
  // or if the cost function returns different residual when called with a
 | 
						|
  // Jacobian output argument vs. calling it without. Otherwise returns true.
 | 
						|
  //
 | 
						|
  // parameters: The parameter values at which to probe.
 | 
						|
  // relative_precision: A threshold for the relative difference between the
 | 
						|
  // Jacobians. If the Jacobians differ by more than this amount, then the
 | 
						|
  // probe fails.
 | 
						|
  // results: On return, the Jacobians (and other information) will be stored
 | 
						|
  // here. May be NULL.
 | 
						|
  //
 | 
						|
  // Returns true if no problems are detected and the difference between the
 | 
						|
  // Jacobians is less than error_tolerance.
 | 
						|
  bool Probe(double const* const* parameters,
 | 
						|
             double relative_precision,
 | 
						|
             ProbeResults* results) const;
 | 
						|
 | 
						|
 private:
 | 
						|
  CERES_DISALLOW_IMPLICIT_CONSTRUCTORS(GradientChecker);
 | 
						|
 | 
						|
  std::vector<const LocalParameterization*> local_parameterizations_;
 | 
						|
  const CostFunction* function_;
 | 
						|
  internal::scoped_ptr<CostFunction> finite_diff_cost_function_;
 | 
						|
};
 | 
						|
 | 
						|
}  // namespace ceres
 | 
						|
 | 
						|
#endif  // CERES_PUBLIC_GRADIENT_CHECKER_H_
 |