You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
exercise_2/3rdparty/opencv_src/sources/samples/dnn
pbyhqr72x 66641bb3c4
提交了opencv源代码sources以及编译过后的文件build;
3 years ago
..
face_detector 提交了opencv源代码sources以及编译过后的文件build; 3 years ago
CMakeLists.txt 提交了opencv源代码sources以及编译过后的文件build; 3 years ago
README.md 提交了opencv源代码sources以及编译过后的文件build; 3 years ago
action_recognition.py 提交了opencv源代码sources以及编译过后的文件build; 3 years ago
classification.cpp 提交了opencv源代码sources以及编译过后的文件build; 3 years ago
classification.py 提交了opencv源代码sources以及编译过后的文件build; 3 years ago
colorization.cpp 提交了opencv源代码sources以及编译过后的文件build; 3 years ago
colorization.py 提交了opencv源代码sources以及编译过后的文件build; 3 years ago
common.hpp 提交了opencv源代码sources以及编译过后的文件build; 3 years ago
common.py 提交了opencv源代码sources以及编译过后的文件build; 3 years ago
custom_layers.hpp 提交了opencv源代码sources以及编译过后的文件build; 3 years ago
dasiamrpn_tracker.py 提交了opencv源代码sources以及编译过后的文件build; 3 years ago
edge_detection.py 提交了opencv源代码sources以及编译过后的文件build; 3 years ago
fast_neural_style.py 提交了opencv源代码sources以及编译过后的文件build; 3 years ago
human_parsing.cpp 提交了opencv源代码sources以及编译过后的文件build; 3 years ago
human_parsing.py 提交了opencv源代码sources以及编译过后的文件build; 3 years ago
js_face_recognition.html 提交了opencv源代码sources以及编译过后的文件build; 3 years ago
mask_rcnn.py 提交了opencv源代码sources以及编译过后的文件build; 3 years ago
mobilenet_ssd_accuracy.py 提交了opencv源代码sources以及编译过后的文件build; 3 years ago
models.yml 提交了opencv源代码sources以及编译过后的文件build; 3 years ago
object_detection.cpp 提交了opencv源代码sources以及编译过后的文件build; 3 years ago
object_detection.py 提交了opencv源代码sources以及编译过后的文件build; 3 years ago
openpose.cpp 提交了opencv源代码sources以及编译过后的文件build; 3 years ago
openpose.py 提交了opencv源代码sources以及编译过后的文件build; 3 years ago
optical_flow.py 提交了opencv源代码sources以及编译过后的文件build; 3 years ago
segmentation.cpp 提交了opencv源代码sources以及编译过后的文件build; 3 years ago
segmentation.py 提交了opencv源代码sources以及编译过后的文件build; 3 years ago
shrink_tf_graph_weights.py 提交了opencv源代码sources以及编译过后的文件build; 3 years ago
siamrpnpp.py 提交了opencv源代码sources以及编译过后的文件build; 3 years ago
text_detection.cpp 提交了opencv源代码sources以及编译过后的文件build; 3 years ago
text_detection.py 提交了opencv源代码sources以及编译过后的文件build; 3 years ago
tf_text_graph_common.py 提交了opencv源代码sources以及编译过后的文件build; 3 years ago
tf_text_graph_efficientdet.py 提交了opencv源代码sources以及编译过后的文件build; 3 years ago
tf_text_graph_faster_rcnn.py 提交了opencv源代码sources以及编译过后的文件build; 3 years ago
tf_text_graph_mask_rcnn.py 提交了opencv源代码sources以及编译过后的文件build; 3 years ago
tf_text_graph_ssd.py 提交了opencv源代码sources以及编译过后的文件build; 3 years ago
virtual_try_on.py 提交了opencv源代码sources以及编译过后的文件build; 3 years ago

README.md

OpenCV deep learning module samples

Model Zoo

Check a wiki for a list of tested models.

If OpenCV is built with Intel's Inference Engine support you can use Intel's pre-trained models.

There are different preprocessing parameters such mean subtraction or scale factors for different models. You may check the most popular models and their parameters at models.yml configuration file. It might be also used for aliasing samples parameters. In example,

python object_detection.py opencv_fd --model /path/to/caffemodel --config /path/to/prototxt

Check -h option to know which values are used by default:

python object_detection.py opencv_fd -h

Face detection

An origin model with single precision floating point weights has been quantized using TensorFlow framework. To achieve the best accuracy run the model on BGR images resized to 300x300 applying mean subtraction of values (104, 177, 123) for each blue, green and red channels correspondingly.

The following are accuracy metrics obtained using COCO object detection evaluation tool on FDDB dataset (see script) applying resize to 300x300 and keeping an origin images' sizes.

AP - Average Precision                            | FP32/FP16 | UINT8          | FP32/FP16 | UINT8          |
AR - Average Recall                               | 300x300   | 300x300        | any size  | any size       |
--------------------------------------------------|-----------|----------------|-----------|----------------|
AP @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] | 0.408     | 0.408          | 0.378     | 0.328 (-0.050) |
AP @[ IoU=0.50      | area=   all | maxDets=100 ] | 0.849     | 0.849          | 0.797     | 0.790 (-0.007) |
AP @[ IoU=0.75      | area=   all | maxDets=100 ] | 0.251     | 0.251          | 0.208     | 0.140 (-0.068) |
AP @[ IoU=0.50:0.95 | area= small | maxDets=100 ] | 0.050     | 0.051 (+0.001) | 0.107     | 0.070 (-0.037) |
AP @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] | 0.381     | 0.379 (-0.002) | 0.380     | 0.368 (-0.012) |
AP @[ IoU=0.50:0.95 | area= large | maxDets=100 ] | 0.455     | 0.455          | 0.412     | 0.337 (-0.075) |
AR @[ IoU=0.50:0.95 | area=   all | maxDets=  1 ] | 0.299     | 0.299          | 0.279     | 0.246 (-0.033) |
AR @[ IoU=0.50:0.95 | area=   all | maxDets= 10 ] | 0.482     | 0.482          | 0.476     | 0.436 (-0.040) |
AR @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] | 0.496     | 0.496          | 0.491     | 0.451 (-0.040) |
AR @[ IoU=0.50:0.95 | area= small | maxDets=100 ] | 0.189     | 0.193 (+0.004) | 0.284     | 0.232 (-0.052) |
AR @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] | 0.481     | 0.480 (-0.001) | 0.470     | 0.458 (-0.012) |
AR @[ IoU=0.50:0.95 | area= large | maxDets=100 ] | 0.528     | 0.528          | 0.520     | 0.462 (-0.058) |

References