You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
parttimejob/node_modules/fraction.js/README.md

467 lines
15 KiB

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

# Fraction.js - in JavaScript
[![NPM Package](https://img.shields.io/npm/v/fraction.js.svg?style=flat)](https://npmjs.org/package/fraction.js "View this project on npm")
[![MIT license](http://img.shields.io/badge/license-MIT-brightgreen.svg)](http://opensource.org/licenses/MIT)
Tired of inprecise numbers represented by doubles, which have to store rational and irrational numbers like PI or sqrt(2) the same way? Obviously the following problem is preventable:
```javascript
1 / 98 * 98 // = 0.9999999999999999
```
If you need more precision or just want a fraction as a result, just include *Fraction.js*:
```javascript
var Fraction = require('fraction.js');
// or
import Fraction from 'fraction.js';
```
and give it a trial:
```javascript
Fraction(1).div(98).mul(98) // = 1
```
Internally, numbers are represented as *numerator / denominator*, which adds just a little overhead. However, the library is written with performance and accuracy in mind, which makes it the perfect basis for [Polynomial.js](https://github.com/infusion/Polynomial.js) and [Math.js](https://github.com/josdejong/mathjs).
Convert decimal to fraction
===
The simplest job for fraction.js is to get a fraction out of a decimal:
```javascript
var x = new Fraction(1.88);
var res = x.toFraction(true); // String "1 22/25"
```
Examples / Motivation
===
A simple example might be
```javascript
var f = new Fraction("9.4'31'"); // 9.4313131313131...
f.mul([-4, 3]).mod("4.'8'"); // 4.88888888888888...
```
The result is
```javascript
console.log(f.toFraction()); // -4154 / 1485
```
You could of course also access the sign (s), numerator (n) and denominator (d) on your own:
```javascript
f.s * f.n / f.d = -1 * 4154 / 1485 = -2.797306...
```
If you would try to calculate it yourself, you would come up with something like:
```javascript
(9.4313131 * (-4 / 3)) % 4.888888 = -2.797308133...
```
Quite okay, but yea - not as accurate as it could be.
Laplace Probability
===
Simple example. What's the probability of throwing a 3, and 1 or 4, and 2 or 4 or 6 with a fair dice?
P({3}):
```javascript
var p = new Fraction([3].length, 6).toString(); // 0.1(6)
```
P({1, 4}):
```javascript
var p = new Fraction([1, 4].length, 6).toString(); // 0.(3)
```
P({2, 4, 6}):
```javascript
var p = new Fraction([2, 4, 6].length, 6).toString(); // 0.5
```
Convert degrees/minutes/seconds to precise rational representation:
===
57+45/60+17/3600
```javascript
var deg = 57; // 57°
var min = 45; // 45 Minutes
var sec = 17; // 17 Seconds
new Fraction(deg).add(min, 60).add(sec, 3600).toString() // -> 57.7547(2)
```
Rational approximation of irrational numbers
===
Now it's getting messy ;d To approximate a number like *sqrt(5) - 2* with a numerator and denominator, you can reformat the equation as follows: *pow(n / d + 2, 2) = 5*.
Then the following algorithm will generate the rational number besides the binary representation.
```javascript
var x = "/", s = "";
var a = new Fraction(0),
b = new Fraction(1);
for (var n = 0; n <= 10; n++) {
var c = a.add(b).div(2);
console.log(n + "\t" + a + "\t" + b + "\t" + c + "\t" + x);
if (c.add(2).pow(2) < 5) {
a = c;
x = "1";
} else {
b = c;
x = "0";
}
s+= x;
}
console.log(s)
```
The result is
```
n a[n] b[n] c[n] x[n]
0 0/1 1/1 1/2 /
1 0/1 1/2 1/4 0
2 0/1 1/4 1/8 0
3 1/8 1/4 3/16 1
4 3/16 1/4 7/32 1
5 7/32 1/4 15/64 1
6 15/64 1/4 31/128 1
7 15/64 31/128 61/256 0
8 15/64 61/256 121/512 0
9 15/64 121/512 241/1024 0
10 241/1024 121/512 483/2048 1
```
Thus the approximation after 11 iterations of the bisection method is *483 / 2048* and the binary representation is 0.00111100011 (see [WolframAlpha](http://www.wolframalpha.com/input/?i=sqrt%285%29-2+binary))
I published another example on how to approximate PI with fraction.js on my [blog](http://www.xarg.org/2014/03/precise-calculations-in-javascript/) (Still not the best idea to approximate irrational numbers, but it illustrates the capabilities of Fraction.js perfectly).
Get the exact fractional part of a number
---
```javascript
var f = new Fraction("-6.(3416)");
console.log("" + f.mod(1).abs()); // 0.(3416)
```
Mathematical correct modulo
---
The behaviour on negative congruences is different to most modulo implementations in computer science. Even the *mod()* function of Fraction.js behaves in the typical way. To solve the problem of having the mathematical correct modulo with Fraction.js you could come up with this:
```javascript
var a = -1;
var b = 10.99;
console.log(new Fraction(a)
.mod(b)); // Not correct, usual Modulo
console.log(new Fraction(a)
.mod(b).add(b).mod(b)); // Correct! Mathematical Modulo
```
fmod() impreciseness circumvented
---
It turns out that Fraction.js outperforms almost any fmod() implementation, including JavaScript itself, [php.js](http://phpjs.org/functions/fmod/), C++, Python, Java and even Wolframalpha due to the fact that numbers like 0.05, 0.1, ... are infinite decimal in base 2.
The equation *fmod(4.55, 0.05)* gives *0.04999999999999957*, wolframalpha says *1/20*. The correct answer should be **zero**, as 0.05 divides 4.55 without any remainder.
Parser
===
Any function (see below) as well as the constructor of the *Fraction* class parses its input and reduce it to the smallest term.
You can pass either Arrays, Objects, Integers, Doubles or Strings.
Arrays / Objects
---
```javascript
new Fraction(numerator, denominator);
new Fraction([numerator, denominator]);
new Fraction({n: numerator, d: denominator});
```
Integers
---
```javascript
new Fraction(123);
```
Doubles
---
```javascript
new Fraction(55.4);
```
**Note:** If you pass a double as it is, Fraction.js will perform a number analysis based on Farey Sequences. If you concern performance, cache Fraction.js objects and pass arrays/objects.
The method is really precise, but too large exact numbers, like 1234567.9991829 will result in a wrong approximation. If you want to keep the number as it is, convert it to a string, as the string parser will not perform any further observations. If you have problems with the approximation, in the file `examples/approx.js` is a different approximation algorithm, which might work better in some more specific use-cases.
Strings
---
```javascript
new Fraction("123.45");
new Fraction("123/45"); // A rational number represented as two decimals, separated by a slash
new Fraction("123:45"); // A rational number represented as two decimals, separated by a colon
new Fraction("4 123/45"); // A rational number represented as a whole number and a fraction
new Fraction("123.'456'"); // Note the quotes, see below!
new Fraction("123.(456)"); // Note the brackets, see below!
new Fraction("123.45'6'"); // Note the quotes, see below!
new Fraction("123.45(6)"); // Note the brackets, see below!
```
Two arguments
---
```javascript
new Fraction(3, 2); // 3/2 = 1.5
```
Repeating decimal places
---
*Fraction.js* can easily handle repeating decimal places. For example *1/3* is *0.3333...*. There is only one repeating digit. As you can see in the examples above, you can pass a number like *1/3* as "0.'3'" or "0.(3)", which are synonym. There are no tests to parse something like 0.166666666 to 1/6! If you really want to handle this number, wrap around brackets on your own with the function below for example: 0.1(66666666)
Assume you want to divide 123.32 / 33.6(567). [WolframAlpha](http://www.wolframalpha.com/input/?i=123.32+%2F+%2812453%2F370%29) states that you'll get a period of 1776 digits. *Fraction.js* comes to the same result. Give it a try:
```javascript
var f = new Fraction("123.32");
console.log("Bam: " + f.div("33.6(567)"));
```
To automatically make a number like "0.123123123" to something more Fraction.js friendly like "0.(123)", I hacked this little brute force algorithm in a 10 minutes. Improvements are welcome...
```javascript
function formatDecimal(str) {
var comma, pre, offset, pad, times, repeat;
if (-1 === (comma = str.indexOf(".")))
return str;
pre = str.substr(0, comma + 1);
str = str.substr(comma + 1);
for (var i = 0; i < str.length; i++) {
offset = str.substr(0, i);
for (var j = 0; j < 5; j++) {
pad = str.substr(i, j + 1);
times = Math.ceil((str.length - offset.length) / pad.length);
repeat = new Array(times + 1).join(pad); // Silly String.repeat hack
if (0 === (offset + repeat).indexOf(str)) {
return pre + offset + "(" + pad + ")";
}
}
}
return null;
}
var f, x = formatDecimal("13.0123123123"); // = 13.0(123)
if (x !== null) {
f = new Fraction(x);
}
```
Attributes
===
The Fraction object allows direct access to the numerator, denominator and sign attributes. It is ensured that only the sign-attribute holds sign information so that a sign comparison is only necessary against this attribute.
```javascript
var f = new Fraction('-1/2');
console.log(f.n); // Numerator: 1
console.log(f.d); // Denominator: 2
console.log(f.s); // Sign: -1
```
Functions
===
Fraction abs()
---
Returns the actual number without any sign information
Fraction neg()
---
Returns the actual number with flipped sign in order to get the additive inverse
Fraction add(n)
---
Returns the sum of the actual number and the parameter n
Fraction sub(n)
---
Returns the difference of the actual number and the parameter n
Fraction mul(n)
---
Returns the product of the actual number and the parameter n
Fraction div(n)
---
Returns the quotient of the actual number and the parameter n
Fraction pow(exp)
---
Returns the power of the actual number, raised to an possible rational exponent. If the result becomes non-rational the function returns `null`.
Fraction mod(n)
---
Returns the modulus (rest of the division) of the actual object and n (this % n). It's a much more precise [fmod()](#fmod-impreciseness-circumvented) if you like. Please note that *mod()* is just like the modulo operator of most programming languages. If you want a mathematical correct modulo, see [here](#mathematical-correct-modulo).
Fraction mod()
---
Returns the modulus (rest of the division) of the actual object (numerator mod denominator)
Fraction gcd(n)
---
Returns the fractional greatest common divisor
Fraction lcm(n)
---
Returns the fractional least common multiple
Fraction ceil([places=0-16])
---
Returns the ceiling of a rational number with Math.ceil
Fraction floor([places=0-16])
---
Returns the floor of a rational number with Math.floor
Fraction round([places=0-16])
---
Returns the rational number rounded with Math.round
Fraction roundTo(multiple)
---
Rounds a fraction to the closest multiple of another fraction.
Fraction inverse()
---
Returns the multiplicative inverse of the actual number (n / d becomes d / n) in order to get the reciprocal
Fraction simplify([eps=0.001])
---
Simplifies the rational number under a certain error threshold. Ex. `0.333` will be `1/3` with `eps=0.001`
boolean equals(n)
---
Check if two numbers are equal
int compare(n)
---
Compare two numbers.
```
result < 0: n is greater than actual number
result > 0: n is smaller than actual number
result = 0: n is equal to the actual number
```
boolean divisible(n)
---
Check if two numbers are divisible (n divides this)
double valueOf()
---
Returns a decimal representation of the fraction
String toString([decimalPlaces=15])
---
Generates an exact string representation of the actual object. For repeated decimal places all digits are collected within brackets, like `1/3 = "0.(3)"`. For all other numbers, up to `decimalPlaces` significant digits are collected - which includes trailing zeros if the number is getting truncated. However, `1/2 = "0.5"` without trailing zeros of course.
**Note:** As `valueOf()` and `toString()` are provided, `toString()` is only called implicitly in a real string context. Using the plus-operator like `"123" + new Fraction` will call valueOf(), because JavaScript tries to combine two primitives first and concatenates them later, as string will be the more dominant type. `alert(new Fraction)` or `String(new Fraction)` on the other hand will do what you expect. If you really want to have control, you should call `toString()` or `valueOf()` explicitly!
String toLatex(excludeWhole=false)
---
Generates an exact LaTeX representation of the actual object. You can see a [live demo](http://www.xarg.org/2014/03/precise-calculations-in-javascript/) on my blog.
The optional boolean parameter indicates if you want to exclude the whole part. "1 1/3" instead of "4/3"
String toFraction(excludeWhole=false)
---
Gets a string representation of the fraction
The optional boolean parameter indicates if you want to exclude the whole part. "1 1/3" instead of "4/3"
Array toContinued()
---
Gets an array of the fraction represented as a continued fraction. The first element always contains the whole part.
```javascript
var f = new Fraction('88/33');
var c = f.toContinued(); // [2, 1, 2]
```
Fraction clone()
---
Creates a copy of the actual Fraction object
Exceptions
===
If a really hard error occurs (parsing error, division by zero), *fraction.js* throws exceptions! Please make sure you handle them correctly.
Installation
===
Installing fraction.js is as easy as cloning this repo or use the following command:
```
npm install fraction.js
```
Using Fraction.js with the browser
===
```html
<script src="fraction.js"></script>
<script>
console.log(Fraction("123/456"));
</script>
```
Using Fraction.js with TypeScript
===
```js
import Fraction from "fraction.js";
console.log(Fraction("123/456"));
```
Coding Style
===
As every library I publish, fraction.js is also built to be as small as possible after compressing it with Google Closure Compiler in advanced mode. Thus the coding style orientates a little on maxing-out the compression rate. Please make sure you keep this style if you plan to extend the library.
Precision
===
Fraction.js tries to circumvent floating point errors, by having an internal representation of numerator and denominator. As it relies on JavaScript, there is also a limit. The biggest number representable is `Number.MAX_SAFE_INTEGER / 1` and the smallest is `-1 / Number.MAX_SAFE_INTEGER`, with `Number.MAX_SAFE_INTEGER=9007199254740991`. If this is not enough, there is `bigfraction.js` shipped experimentally, which relies on `BigInt` and should become the new Fraction.js eventually.
Testing
===
If you plan to enhance the library, make sure you add test cases and all the previous tests are passing. You can test the library with
```
npm test
```
Copyright and licensing
===
Copyright (c) 2023, [Robert Eisele](https://raw.org/)
Licensed under the MIT license.