parent
41d7e55393
commit
c3908abc41
@ -0,0 +1,79 @@
|
||||
""" Parts of the U-Net model """
|
||||
"""https://github.com/milesial/Pytorch-UNet/blob/master/unet/unet_parts.py"""
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
|
||||
|
||||
class DoubleConv(nn.Module):
|
||||
"""(convolution => [BN] => ReLU) * 2
|
||||
+
|
||||
(element-wise add)"""
|
||||
|
||||
def __init__(self, in_channels, out_channels):
|
||||
super().__init__()
|
||||
self.double_conv = nn.Sequential(
|
||||
nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1),
|
||||
nn.BatchNorm2d(out_channels),
|
||||
nn.ReLU(inplace=True),
|
||||
nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1),
|
||||
nn.BatchNorm2d(out_channels),
|
||||
nn.ReLU(inplace=True)
|
||||
)
|
||||
self.element_wise_add = nn.Sequential(
|
||||
nn.Conv2d(in_channels, out_channels, kernel_size=1),
|
||||
nn.BatchNorm2d(out_channels)
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
return self.double_conv(x)
|
||||
|
||||
|
||||
class Down(nn.Module):
|
||||
"""Downscaling with maxpool then double conv"""
|
||||
|
||||
def __init__(self, in_channels, out_channels):
|
||||
super().__init__()
|
||||
self.maxpool_conv = nn.Sequential(
|
||||
nn.MaxPool2d(2),
|
||||
DoubleConv(in_channels, out_channels)
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
return self.maxpool_conv(x)
|
||||
|
||||
|
||||
class Up(nn.Module):
|
||||
"""Upscaling then double conv"""
|
||||
|
||||
def __init__(self, in_channels, out_channels, bilinear=True):
|
||||
super().__init__()
|
||||
|
||||
# if bilinear, use the normal convolutions to reduce the number of channels
|
||||
if bilinear:
|
||||
self.up = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True)
|
||||
else:
|
||||
self.up = nn.ConvTranspose2d(in_channels // 2, in_channels // 2, kernel_size=2, stride=2)# //为整数除法
|
||||
|
||||
self.conv = DoubleConv(in_channels, out_channels)
|
||||
|
||||
def forward(self, x1, x2):
|
||||
x1 = self.up(x1)
|
||||
diffY = torch.tensor([x2.size()[2] - x1.size()[2]])
|
||||
diffX = torch.tensor([x2.size()[3] - x1.size()[3]])
|
||||
|
||||
x1 = F.pad(x1, [diffX // 2, diffX - diffX // 2,
|
||||
diffY // 2, diffY - diffY // 2])
|
||||
|
||||
x = torch.cat([x2, x1], dim=1)
|
||||
return self.conv(x)
|
||||
|
||||
|
||||
class OutConv(nn.Module):
|
||||
def __init__(self, in_channels, out_channels):
|
||||
super(OutConv, self).__init__()
|
||||
self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=1)
|
||||
|
||||
def forward(self, x):
|
||||
return self.conv(x)
|
Loading…
Reference in new issue