You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

81 lines
4.4 KiB

8 months ago
import numpy as np
import lqmtest_x3_2_load_data
import lqmtest_x3_4_conv_proc
class ModelObj: # 网络对象
def __init__(self, ObjID, ObjType, ObjLable, ParaString, ObjX, ObjY):
self.ObjID = ObjID # 图元号
self.ObjType = ObjType # 图元类别
self.ObjLable = ObjLable # 对象标签
self.ParaString = ParaString # 参数字符串
self.ObjX = ObjX # 对象位置x坐标
self.ObjY = ObjY # 对象位置y坐标
class Pool_Class(ModelObj): # 池化对象
def __init__(self, ObjID, ObjType, ObjLable, ParaString, ObjX, ObjY):
super().__init__(ObjID, ObjType, ObjLable, ParaString, ObjX, ObjY)
self.MaxPoolProc = self.pool_proc # 基本操作函数
self.SetPollPara = self.setpool_para # 参数设置函数
def pool_proc(self, image, PoolPara):
pool_mode = PoolPara["pool_mode"]
pool_size = PoolPara["pool_size"]
stride = PoolPara["stride"]
c, h, w = image.shape # 获取输入特征图的高度和宽度
out_h = int((h - pool_size) / stride) + 1 # 计算输出特征图的高度
out_w = int((w - pool_size) / stride) + 1 # 计算输出特征图的宽度
out = np.zeros((c, out_h, out_w)) # 初始化输出特征图为全零数组
for k in range(c): # 对于输出的每一个位置上计算:
for i in range(out_h):
for j in range(out_w):
window = image[k, i * stride:i * stride + pool_size,
j * stride:j * stride + pool_size]
if pool_mode == "max": # 最大池化
out[k][i][j] = np.max(window)
elif pool_mode == "avg": # 平均池化
out[k][i][j] = np.mean(window)
elif pool_mode == "min": # 最小池化
out[k][i][j] = np.min(window)
else: # 无效的池化类型
raise ValueError("Invalid pooling mode")
return out # 返回特征图。
def setpool_para(self): # 定义设置池化参数的函数
pool_mode = input("请输入池化模式max/avg/min: ") # 用户输入池化模式
pool_size = int(input("请输入池化大小: ")) # 用户输入池化大小
stride = int(input("请输入步长: ")) # 用户输入步长
PoolPara = {"pool_mode": pool_mode, "pool_size": pool_size,
"stride": stride} # 返回PoolPara参数这里用字典来存储
return PoolPara # 返回PoolPara参数
if __name__ == '__main__':
DataSet = lqmtest_x3_2_load_data.Data_Class("DataSet1", 1, "数据集1", [], 120, 330)
# setload_data()函数,获取加载数据集的参数
DataPara = DataSet.SetDataPara()
train_images, test_images = DataSet.LoadData(DataPara)
Conv = lqmtest_x3_4_conv_proc.Conv_Class("Conv1", 2, "卷积1", [], 250, 330)
ConvPara = Conv.SetConvPara()
for i in range(len(train_images) // 32):
images = train_images[i * 32:(i + 1) * 32]
conv_images = [] # 存储卷积处理后的图片的列表
for image in images: # 获取训练集的图片数据
dim = len(image.shape) # 获取矩阵的维度
if dim == 2: # 如果是二维矩阵,则转化为三维矩阵
image_h, image_w = image.shape
image = np.reshape(image, (1, image_h, image_w))
# 调用ConvProc()函数根据ConvPara参数完成卷积计算
output = Conv.ConvProc(image, ConvPara)
conv_images.append(output) # 将卷积结果存储到列表
elif dim == 3: # 若为三维矩阵,则保持不变直接卷积处理
output = Conv.ConvProc(image, ConvPara)
conv_images.append(output)
# 将卷积处理后的图片列表转换为数组形式,方便后续处理
conv_images = np.array(conv_images)
Pool = Pool_Class("Pool1", 3, "最大池化1", [], 380, 330)
PoolPara = Pool.SetPollPara()
pool_images = [] # 存储池化处理后的图片的列表
for image in conv_images: # 获取卷积后的图片数据
output = Pool.MaxPoolProc(image, PoolPara)
pool_images.append(output) # 将池化结果存储到列表
# 将池化处理后的图片列表转换为数组形式,方便后续处理
pool_images = np.array(pool_images)