You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

387 lines
13 KiB

(*
* Copyright (c) Facebook, Inc. and its affiliates.
*
* This source code is licensed under the MIT license found in the
* LICENSE file in the root directory of this source tree.
*)
(* Transformation from llvm to llair *)
open HolKernel boolLib bossLib Parse;
open arithmeticTheory pred_setTheory;
open settingsTheory llvmTheory llairTheory;
new_theory "llvm_to_llair";
numLib.prefer_num ();
Definition the_def:
(the None x = x)
(the (Some x) _ = x)
End
Definition find_name_def:
find_name used new suff =
let n = new ++ (toString suff) in
if n used ¬finite used then
n
else
find_name used new (suff + 1n)
Termination
WF_REL_TAC `measure (λ(u,new,s). card { str | ?n. str = new++toString n str u s n })` >> rw [] >>
qmatch_abbrev_tac `card s1 < card s2` >>
`s2 used` by rw [Abbr `s1`, Abbr `s2`, SUBSET_DEF] >>
`s1 s2` by (rw [Abbr `s1`, Abbr `s2`, SUBSET_DEF] >> qexists_tac `n` >> rw []) >>
`s1 s2`
by (
rw [Abbr `s1`, Abbr `s2`, EXTENSION] >> qexists_tac `new ++ toString suff` >> rw []) >>
metis_tac [CARD_SUBSET, SUBSET_FINITE, SUBSET_EQ_CARD, LESS_OR_EQ]
End
Definition gen_name_def:
gen_name used new =
if new used then
find_name used new 0
else
new
End
Definition gen_names_def:
(gen_names used [] = (used, []))
(gen_names used (n::ns) =
let n = gen_name used n in
let (used, names) = gen_names ({n} used) ns in
(used, n::names))
End
Definition translate_size_def:
(translate_size llvm$W1 = 1)
(translate_size W8 = 8)
(translate_size W32 = 32)
(translate_size W64 = 64)
End
(* TODO *)
Definition translate_ty_def:
translate_ty = ARB : ty -> typ
End
Definition translate_glob_var_def:
translate_glob_var (Glob_var g) t = Var_name g (translate_ty t)
End
Definition translate_reg_def:
translate_reg (Reg r) t = Var_name r (translate_ty t)
End
Definition translate_label_def:
translate_label f (Lab l) = Lab_name f l
End
Definition translate_const_def:
(translate_const (IntC s i) = Integer i (IntegerT (translate_size s)))
(translate_const (StrC tcs) =
Record (map (λ(ty, c). translate_const c) tcs))
(translate_const (ArrC tcs) =
Record (map (λ(ty, c). translate_const c) tcs))
(* TODO *)
(translate_const (GlobalC g) = Var (translate_glob_var g ARB))
(* TODO *)
(translate_const (GepC _ _ _ _) = ARB)
(translate_const UndefC = Nondet)
Termination
WF_REL_TAC `measure const_size` >>
Induct_on `tcs` >> rw [] >> rw [const_size_def] >>
first_x_assum drule >> decide_tac
End
Definition translate_arg_def:
(translate_arg emap (Constant c) t = translate_const c)
(translate_arg emap (Variable r) t =
case flookup emap r of
| None => Var (translate_reg r t)
| Some e => e)
End
Definition translate_updatevalue_def:
(translate_updatevalue a v [] = v)
(translate_updatevalue a v (c::cs) =
let c' = translate_const c in
Update a c' (translate_updatevalue (Select a c') v cs))
End
(* TODO *)
Definition translate_instr_to_exp_def:
(translate_instr_to_exp emap (llvm$Sub _ _ _ ty a1 a2) =
llair$Sub (translate_ty ty) (translate_arg emap a1 ty) (translate_arg emap a2 ty))
(translate_instr_to_exp emap (Extractvalue _ (t, a) cs) =
foldl (λe c. Select e (translate_const c)) (translate_arg emap a t) cs)
(translate_instr_to_exp emap (Insertvalue _ (t1, a1) (t2, a2) cs) =
translate_updatevalue (translate_arg emap a1 t1) (translate_arg emap a2 t2) cs)
End
(* This translation of insertvalue to update and select is quadratic in the
* number of indices, but we haven't observed clang-generated code with multiple
* indices.
*
* Insertvalue a v [c1; c2; c3] becomes
*
* Up a c1 (Up (Sel a c1) c2 (Up (Sel (Sel a c1) c2) c3 v))
*
* We could store each of the selections and get a linear size list of
* instructions instead of a single expression.
*
* Examples:
* EVAL ``translate_instr_to_exp fempty (Extractvalue r (t,a) [c1; c2; c3; c4; c5])``
translate_instr_to_exp fempty (Extractvalue r (t,a) [c1; c2; c3; c4; c5]) =
Select
(Select
(Select
(Select (Select (translate_arg fempty a) (translate_const c1))
(translate_const c2)) (translate_const c3))
(translate_const c4)) (translate_const c5): thm
*
* EVAL ``translate_instr_to_exp fempty (Insertvalue r (t,a) (t,v) [c1; c2; c3; c4; c5])``
translate_instr_to_exp fempty (Insertvalue r (t,a) (t,v) [c1; c2; c3; c4; c5]) =
Update (translate_arg fempty a) (translate_const c1)
(Update (Select (translate_arg fempty a) (translate_const c1))
(translate_const c2)
(Update
(Select (Select (translate_arg fempty a) (translate_const c1))
(translate_const c2)) (translate_const c3)
(Update
(Select
(Select
(Select (translate_arg fempty a) (translate_const c1))
(translate_const c2)) (translate_const c3))
(translate_const c4)
(Update
(Select
(Select
(Select
(Select (translate_arg fempty a)
(translate_const c1)) (translate_const c2))
(translate_const c3)) (translate_const c4))
(translate_const c5) (translate_arg fempty v))))): thm
*
* *)
(* TODO *)
Definition translate_instr_to_inst_def:
(translate_instr_to_inst emap (llvm$Store (t1, a1) (t2, a2)) =
llair$Store (translate_arg emap a1 t1) (translate_arg emap a2 t2) (sizeof t2))
(translate_instr_to_inst emap (Load r t (t1, a1)) =
Load (translate_reg r t1) (translate_arg emap a1 t1) (sizeof t))
End
(* TODO *)
Definition translate_instr_to_term_def:
translate_instr_to_term f emap (Br a l1 l2) =
Iswitch (translate_arg emap a (IntT W1)) [translate_label f l2; translate_label f l1]
End
Datatype:
instr_class =
| Exp reg ty
| Non_exp
| Term
| Call
End
(* Convert index lists as for GEP into number lists, for the purpose of
* calculating types. Everything goes to 0 but for positive integer constants,
* because those things can't be used to index anything but arrays, and the type
* for the array contents doesn't depend on the index's value. *)
Definition idx_to_num_def:
(idx_to_num (_, (Constant (IntC _ n))) = Num (ABS n))
(idx_to_num (_, _) = 0)
End
Definition cidx_to_num_def:
(cidx_to_num (IntC _ n) = Num (ABS n))
(cidx_to_num _ = 0)
End
Definition classify_instr_def:
(classify_instr (Call _ _ _ _) = Call)
(classify_instr (Ret _) = Term)
(classify_instr (Br _ _ _) = Term)
(classify_instr (Invoke _ _ _ _ _ _) = Term)
(classify_instr Unreachable = Term)
(classify_instr (Load _ _ _) = Non_exp)
(classify_instr (Store _ _) = Non_exp)
(classify_instr (Cxa_throw _ _ _) = Non_exp)
(classify_instr Cxa_end_catch = Non_exp)
(classify_instr (Cxa_begin_catch _ _) = Non_exp)
(classify_instr (Sub r _ _ t _ _) = Exp r t)
(classify_instr (Extractvalue r (t, _) idx) =
Exp r (THE (extract_type t (map cidx_to_num idx))))
(classify_instr (Insertvalue r (t, _) _ idx) = Exp r t)
(classify_instr (Alloca r t _) = Exp r (PtrT t))
(classify_instr (Gep r t _ idx) =
Exp r (PtrT (THE (extract_type t (map idx_to_num idx)))))
(classify_instr (Ptrtoint r _ t) = Exp r t)
(classify_instr (Inttoptr r _ t) = Exp r t)
(classify_instr (Icmp r _ _ _ _) = Exp r (IntT W1))
(* TODO *)
(classify_instr (Cxa_allocate_exn r _) = Exp r ARB)
(classify_instr (Cxa_get_exception_ptr r _) = Exp r ARB)
End
(* Translate a list of instructions into an block. f is the name of the function
* that the instructions are in, reg_to_keep is the set of variables that we
* want to keep assignments to (e.g., because of sharing in the expression
* structure. * emap is a mapping of registers to expressions that compute the
* value that should have been in the expression.
*
* This tries to build large expressions, and omits intermediate assignments
* wherever possible.
* For example:
* r2 = sub r0 r1
* r3 = sub r2 r1
* r4 = sub r3 r0
*
* becomes
* r4 = sub (sub (sub r0 r1) r1) r0
*
* if r4 is the only register listed as needing to be kept.
*
*)
Definition translate_instrs_def:
(translate_instrs f emap reg_to_keep [] = (<| cmnd := []; term := Unreachable |>, emap))
(translate_instrs f emap reg_to_keep (i :: is) =
case classify_instr i of
| Exp r t =>
let x = translate_reg r t in
let e = translate_instr_to_exp emap i in
if r reg_to_keep then
let (b, emap') = translate_instrs f (emap |+ (r, Var x)) reg_to_keep is in
(b with cmnd := Move [(x, e)] :: b.cmnd, emap')
else
translate_instrs f (emap |+ (r, e)) reg_to_keep is
| Non_exp =>
let (b, emap') = translate_instrs f emap reg_to_keep is in
(b with cmnd := translate_instr_to_inst emap i :: b.cmnd, emap')
| Term =>
(<| cmnd := []; term := translate_instr_to_term f emap i |>, emap)
(* TODO *)
| Call => ARB)
End
Definition dest_label_def:
dest_label (Lab s) = s
End
Definition dest_phi_def:
dest_phi (Phi r t largs) = (r, t, largs)
End
Definition translate_label_opt_def:
(translate_label_opt f entry None = Lab_name f entry)
(translate_label_opt f entry (Some l) = translate_label f l)
End
Definition translate_header_def:
(translate_header f entry Entry = [])
(translate_header f entry (Head phis _) =
map
(λ(r, t, largs).
(translate_reg r t,
map (λ(l, arg). (translate_label_opt f entry l, translate_arg fempty arg t)) largs))
(map dest_phi phis))
End
Definition translate_block_def:
translate_block f entry_n emap regs_to_keep (l, b) =
let (b', emap') = translate_instrs f emap regs_to_keep b.body in
((Lab_name f (the (option_map dest_label l) entry_n),
(translate_header f entry_n b.h, b')),
emap')
End
(* Given a label and phi node, get the assignment for that incoming label. It's
* convenient to return a list, but we expect there to be exactly 1 element. *)
Definition build_move_for_lab_def:
build_move_for_lab l (r, les) =
let les = filter (λ(l', e). l = l') les in
map (λ(l', e). (r,e)) les
End
(* Given a list of phis and a label, get the move corresponding to entering
* the block targeted by l_to from block l_from *)
Definition generate_move_block_def:
generate_move_block phis l_from l_to =
let t = Iswitch (Integer 0 (IntegerT 1)) [l_to] in
case alookup phis l_to of
| None => <| cmnd := [Move []]; term := t |>
| Some (phis, _) =>
<| cmnd := [Move (flat (map (build_move_for_lab l_from) phis))];
term := t |>
End
Definition label_name_def:
label_to_name (Lab_name _ l) = l
End
(* Given association list of labels and phi-block pairs, and a particular block,
* build the new move blocks for its terminator *)
Definition generate_move_blocks_def:
generate_move_blocks f used_names bs (l_from, (_, body)) =
case body.term of
| Iswitch e ls =>
let (used_names, new_names) = gen_names used_names (map label_to_name ls) in
let mb = map2 (λl_to new. (Lab_name f new, generate_move_block bs l_from l_to)) ls new_names in
(used_names, (l_from, body with term := Iswitch e (map fst mb)) :: mb)
End
Definition generate_move_blocks_list_def:
(generate_move_blocks_list f used_names bs [] = (used_names, []))
(generate_move_blocks_list f used_names bs (b::bs') =
let (used_names, new_blocks) = generate_move_blocks f used_names bs b in
let (used_names, new_blocks2) =
generate_move_blocks_list f used_names bs bs'
in
(used_names, new_blocks :: new_blocks2))
End
(* Given an association list of labels and phi-block pairs, remove the phi's,
* by generating an extra block along each control flow edge that does the move
* corresponding to the relevant phis. *)
Definition remove_phis_def:
remove_phis f used_names bs = flat (snd (generate_move_blocks_list f used_names bs bs))
End
Definition translate_param_def:
translate_param (t, r) = translate_reg r t
End
Definition translate_def_def:
translate_def (Lab f) d =
let used_names = ARB in
let entry_name = gen_name used_names "entry" in
(* TODO *)
let regs_to_keep = UNIV in
(* We thread a mapping from register names to expressions through. This
* works assuming that the blocks are in a good ordering, which must exist
* because the LLVM is in SSA form, and so each definition must dominate all
* uses.
* *)
let (bs, emap) =
foldl
(λ(bs, emap) b.
let (b', emap') = translate_block f entry_name emap regs_to_keep b in
(b'::bs, emap'))
([], fempty) d.blocks
in
<| params := map translate_param d.params;
(* TODO: calculate these from the produced llair, and not the llvm *)
locals := ARB;
entry := Lab_name f entry_name;
cfg := remove_phis f used_names (reverse bs);
freturn := ARB;
fthrow := ARB |>
End
export_theory ();