|
|
|
|
(*
|
|
|
|
|
* Copyright (c) Facebook, Inc. and its affiliates.
|
|
|
|
|
*
|
|
|
|
|
* This source code is licensed under the MIT license found in the
|
|
|
|
|
* LICENSE file in the root directory of this source tree.
|
|
|
|
|
*)
|
|
|
|
|
|
|
|
|
|
(* Transformation from llvm to llair *)
|
|
|
|
|
|
|
|
|
|
open HolKernel boolLib bossLib Parse;
|
|
|
|
|
open arithmeticTheory pred_setTheory;
|
|
|
|
|
open settingsTheory llvmTheory llairTheory;
|
|
|
|
|
|
|
|
|
|
new_theory "llvm_to_llair";
|
|
|
|
|
|
|
|
|
|
numLib.prefer_num ();
|
|
|
|
|
|
|
|
|
|
Definition the_def:
|
|
|
|
|
(the None x = x) ∧
|
|
|
|
|
(the (Some x) _ = x)
|
|
|
|
|
End
|
|
|
|
|
|
|
|
|
|
Definition find_name_def:
|
|
|
|
|
find_name used new suff =
|
|
|
|
|
let n = new ++ (toString suff) in
|
|
|
|
|
if n ∉ used ∨ ¬finite used then
|
|
|
|
|
n
|
|
|
|
|
else
|
|
|
|
|
find_name used new (suff + 1n)
|
|
|
|
|
Termination
|
|
|
|
|
WF_REL_TAC `measure (λ(u,new,s). card { str | ?n. str = new++toString n ∧ str ∈ u ∧ s ≤ n })` >> rw [] >>
|
|
|
|
|
qmatch_abbrev_tac `card s1 < card s2` >>
|
|
|
|
|
`s2 ⊆ used` by rw [Abbr `s1`, Abbr `s2`, SUBSET_DEF] >>
|
|
|
|
|
`s1 ⊆ s2` by (rw [Abbr `s1`, Abbr `s2`, SUBSET_DEF] >> qexists_tac `n` >> rw []) >>
|
|
|
|
|
`s1 ≠ s2`
|
|
|
|
|
by (
|
|
|
|
|
rw [Abbr `s1`, Abbr `s2`, EXTENSION] >> qexists_tac `new ++ toString suff` >> rw []) >>
|
|
|
|
|
metis_tac [CARD_SUBSET, SUBSET_FINITE, SUBSET_EQ_CARD, LESS_OR_EQ]
|
|
|
|
|
End
|
|
|
|
|
|
|
|
|
|
Definition gen_name_def:
|
|
|
|
|
gen_name used new =
|
|
|
|
|
if new ∈ used then
|
|
|
|
|
find_name used new 0
|
|
|
|
|
else
|
|
|
|
|
new
|
|
|
|
|
End
|
|
|
|
|
|
|
|
|
|
Definition gen_names_def:
|
|
|
|
|
(gen_names used [] = (used, [])) ∧
|
|
|
|
|
(gen_names used (n::ns) =
|
|
|
|
|
let n = gen_name used n in
|
|
|
|
|
let (used, names) = gen_names ({n} ∪ used) ns in
|
|
|
|
|
(used, n::names))
|
|
|
|
|
End
|
|
|
|
|
|
|
|
|
|
Definition translate_size_def:
|
|
|
|
|
(translate_size llvm$W1 = 1) ∧
|
|
|
|
|
(translate_size W8 = 8) ∧
|
|
|
|
|
(translate_size W32 = 32) ∧
|
|
|
|
|
(translate_size W64 = 64)
|
|
|
|
|
End
|
|
|
|
|
|
|
|
|
|
(* TODO *)
|
|
|
|
|
Definition translate_ty_def:
|
|
|
|
|
translate_ty = ARB : ty -> typ
|
|
|
|
|
End
|
|
|
|
|
|
|
|
|
|
Definition translate_glob_var_def:
|
|
|
|
|
translate_glob_var (Glob_var g) t = Var_name g (translate_ty t)
|
|
|
|
|
End
|
|
|
|
|
|
|
|
|
|
Definition translate_reg_def:
|
|
|
|
|
translate_reg (Reg r) t = Var_name r (translate_ty t)
|
|
|
|
|
End
|
|
|
|
|
|
|
|
|
|
Definition translate_label_def:
|
|
|
|
|
translate_label f (Lab l) = Lab_name f l
|
|
|
|
|
End
|
|
|
|
|
|
|
|
|
|
Definition translate_const_def:
|
|
|
|
|
(translate_const (IntC s i) = Integer i (IntegerT (translate_size s))) ∧
|
|
|
|
|
(translate_const (StrC tcs) =
|
|
|
|
|
Record (map (λ(ty, c). translate_const c) tcs)) ∧
|
|
|
|
|
(translate_const (ArrC tcs) =
|
|
|
|
|
Record (map (λ(ty, c). translate_const c) tcs)) ∧
|
|
|
|
|
(* TODO *)
|
|
|
|
|
(translate_const (GlobalC g) = Var (translate_glob_var g ARB)) ∧
|
|
|
|
|
(* TODO *)
|
|
|
|
|
(translate_const (GepC _ _ _ _) = ARB) ∧
|
|
|
|
|
(translate_const UndefC = Nondet)
|
|
|
|
|
Termination
|
|
|
|
|
WF_REL_TAC `measure const_size` >>
|
|
|
|
|
Induct_on `tcs` >> rw [] >> rw [const_size_def] >>
|
|
|
|
|
first_x_assum drule >> decide_tac
|
|
|
|
|
End
|
|
|
|
|
|
|
|
|
|
Definition translate_arg_def:
|
|
|
|
|
(translate_arg emap (Constant c) t = translate_const c) ∧
|
|
|
|
|
(translate_arg emap (Variable r) t =
|
|
|
|
|
case flookup emap r of
|
|
|
|
|
| None => Var (translate_reg r t)
|
|
|
|
|
| Some e => e)
|
|
|
|
|
End
|
|
|
|
|
|
|
|
|
|
Definition translate_updatevalue_def:
|
|
|
|
|
(translate_updatevalue a v [] = v) ∧
|
|
|
|
|
(translate_updatevalue a v (c::cs) =
|
|
|
|
|
let c' = translate_const c in
|
|
|
|
|
Update a c' (translate_updatevalue (Select a c') v cs))
|
|
|
|
|
End
|
|
|
|
|
|
|
|
|
|
(* TODO *)
|
|
|
|
|
Definition translate_instr_to_exp_def:
|
|
|
|
|
(translate_instr_to_exp emap (llvm$Sub _ _ _ ty a1 a2) =
|
|
|
|
|
llair$Sub (translate_ty ty) (translate_arg emap a1 ty) (translate_arg emap a2 ty)) ∧
|
|
|
|
|
(translate_instr_to_exp emap (Extractvalue _ (t, a) cs) =
|
|
|
|
|
foldl (λe c. Select e (translate_const c)) (translate_arg emap a t) cs) ∧
|
|
|
|
|
(translate_instr_to_exp emap (Insertvalue _ (t1, a1) (t2, a2) cs) =
|
|
|
|
|
translate_updatevalue (translate_arg emap a1 t1) (translate_arg emap a2 t2) cs)
|
|
|
|
|
End
|
|
|
|
|
|
|
|
|
|
(* This translation of insertvalue to update and select is quadratic in the
|
|
|
|
|
* number of indices, but we haven't observed clang-generated code with multiple
|
|
|
|
|
* indices.
|
|
|
|
|
*
|
|
|
|
|
* Insertvalue a v [c1; c2; c3] becomes
|
|
|
|
|
*
|
|
|
|
|
* Up a c1 (Up (Sel a c1) c2 (Up (Sel (Sel a c1) c2) c3 v))
|
|
|
|
|
*
|
|
|
|
|
* We could store each of the selections and get a linear size list of
|
|
|
|
|
* instructions instead of a single expression.
|
|
|
|
|
*
|
|
|
|
|
* Examples:
|
|
|
|
|
* EVAL ``translate_instr_to_exp fempty (Extractvalue r (t,a) [c1; c2; c3; c4; c5])``
|
|
|
|
|
⊢ translate_instr_to_exp fempty (Extractvalue r (t,a) [c1; c2; c3; c4; c5]) =
|
|
|
|
|
Select
|
|
|
|
|
(Select
|
|
|
|
|
(Select
|
|
|
|
|
(Select (Select (translate_arg fempty a) (translate_const c1))
|
|
|
|
|
(translate_const c2)) (translate_const c3))
|
|
|
|
|
(translate_const c4)) (translate_const c5): thm
|
|
|
|
|
*
|
|
|
|
|
* EVAL ``translate_instr_to_exp fempty (Insertvalue r (t,a) (t,v) [c1; c2; c3; c4; c5])``
|
|
|
|
|
⊢ translate_instr_to_exp fempty (Insertvalue r (t,a) (t,v) [c1; c2; c3; c4; c5]) =
|
|
|
|
|
Update (translate_arg fempty a) (translate_const c1)
|
|
|
|
|
(Update (Select (translate_arg fempty a) (translate_const c1))
|
|
|
|
|
(translate_const c2)
|
|
|
|
|
(Update
|
|
|
|
|
(Select (Select (translate_arg fempty a) (translate_const c1))
|
|
|
|
|
(translate_const c2)) (translate_const c3)
|
|
|
|
|
(Update
|
|
|
|
|
(Select
|
|
|
|
|
(Select
|
|
|
|
|
(Select (translate_arg fempty a) (translate_const c1))
|
|
|
|
|
(translate_const c2)) (translate_const c3))
|
|
|
|
|
(translate_const c4)
|
|
|
|
|
(Update
|
|
|
|
|
(Select
|
|
|
|
|
(Select
|
|
|
|
|
(Select
|
|
|
|
|
(Select (translate_arg fempty a)
|
|
|
|
|
(translate_const c1)) (translate_const c2))
|
|
|
|
|
(translate_const c3)) (translate_const c4))
|
|
|
|
|
(translate_const c5) (translate_arg fempty v))))): thm
|
|
|
|
|
*
|
|
|
|
|
* *)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
(* TODO *)
|
|
|
|
|
Definition translate_instr_to_inst_def:
|
|
|
|
|
(translate_instr_to_inst emap (llvm$Store (t1, a1) (t2, a2)) =
|
|
|
|
|
llair$Store (translate_arg emap a1 t1) (translate_arg emap a2 t2) (sizeof t2)) ∧
|
|
|
|
|
(translate_instr_to_inst emap (Load r t (t1, a1)) =
|
|
|
|
|
Load (translate_reg r t1) (translate_arg emap a1 t1) (sizeof t))
|
|
|
|
|
End
|
|
|
|
|
|
|
|
|
|
(* TODO *)
|
|
|
|
|
Definition translate_instr_to_term_def:
|
|
|
|
|
translate_instr_to_term f emap (Br a l1 l2) =
|
|
|
|
|
Iswitch (translate_arg emap a (IntT W1)) [translate_label f l2; translate_label f l1]
|
|
|
|
|
End
|
|
|
|
|
|
|
|
|
|
Datatype:
|
|
|
|
|
instr_class =
|
|
|
|
|
| Exp reg ty
|
|
|
|
|
| Non_exp
|
|
|
|
|
| Term
|
|
|
|
|
| Call
|
|
|
|
|
End
|
|
|
|
|
|
|
|
|
|
(* Convert index lists as for GEP into number lists, for the purpose of
|
|
|
|
|
* calculating types. Everything goes to 0 but for positive integer constants,
|
|
|
|
|
* because those things can't be used to index anything but arrays, and the type
|
|
|
|
|
* for the array contents doesn't depend on the index's value. *)
|
|
|
|
|
Definition idx_to_num_def:
|
|
|
|
|
(idx_to_num (_, (Constant (IntC _ n))) = Num (ABS n)) ∧
|
|
|
|
|
(idx_to_num (_, _) = 0)
|
|
|
|
|
End
|
|
|
|
|
|
|
|
|
|
Definition cidx_to_num_def:
|
|
|
|
|
(cidx_to_num (IntC _ n) = Num (ABS n)) ∧
|
|
|
|
|
(cidx_to_num _ = 0)
|
|
|
|
|
End
|
|
|
|
|
|
|
|
|
|
Definition classify_instr_def:
|
|
|
|
|
(classify_instr (Call _ _ _ _) = Call) ∧
|
|
|
|
|
(classify_instr (Ret _) = Term) ∧
|
|
|
|
|
(classify_instr (Br _ _ _) = Term) ∧
|
|
|
|
|
(classify_instr (Invoke _ _ _ _ _ _) = Term) ∧
|
|
|
|
|
(classify_instr Unreachable = Term) ∧
|
|
|
|
|
(classify_instr (Load _ _ _) = Non_exp) ∧
|
|
|
|
|
(classify_instr (Store _ _) = Non_exp) ∧
|
|
|
|
|
(classify_instr (Cxa_throw _ _ _) = Non_exp) ∧
|
|
|
|
|
(classify_instr Cxa_end_catch = Non_exp) ∧
|
|
|
|
|
(classify_instr (Cxa_begin_catch _ _) = Non_exp) ∧
|
|
|
|
|
(classify_instr (Sub r _ _ t _ _) = Exp r t) ∧
|
|
|
|
|
(classify_instr (Extractvalue r (t, _) idx) =
|
|
|
|
|
Exp r (THE (extract_type t (map cidx_to_num idx)))) ∧
|
|
|
|
|
(classify_instr (Insertvalue r (t, _) _ idx) = Exp r t) ∧
|
|
|
|
|
(classify_instr (Alloca r t _) = Exp r (PtrT t)) ∧
|
|
|
|
|
(classify_instr (Gep r t _ idx) =
|
|
|
|
|
Exp r (PtrT (THE (extract_type t (map idx_to_num idx))))) ∧
|
|
|
|
|
(classify_instr (Ptrtoint r _ t) = Exp r t) ∧
|
|
|
|
|
(classify_instr (Inttoptr r _ t) = Exp r t) ∧
|
|
|
|
|
(classify_instr (Icmp r _ _ _ _) = Exp r (IntT W1)) ∧
|
|
|
|
|
(* TODO *)
|
|
|
|
|
(classify_instr (Cxa_allocate_exn r _) = Exp r ARB) ∧
|
|
|
|
|
(classify_instr (Cxa_get_exception_ptr r _) = Exp r ARB)
|
|
|
|
|
End
|
|
|
|
|
|
|
|
|
|
(* Translate a list of instructions into an block. f is the name of the function
|
|
|
|
|
* that the instructions are in, reg_to_keep is the set of variables that we
|
|
|
|
|
* want to keep assignments to (e.g., because of sharing in the expression
|
|
|
|
|
* structure. * emap is a mapping of registers to expressions that compute the
|
|
|
|
|
* value that should have been in the expression.
|
|
|
|
|
*
|
|
|
|
|
* This tries to build large expressions, and omits intermediate assignments
|
|
|
|
|
* wherever possible.
|
|
|
|
|
* For example:
|
|
|
|
|
* r2 = sub r0 r1
|
|
|
|
|
* r3 = sub r2 r1
|
|
|
|
|
* r4 = sub r3 r0
|
|
|
|
|
*
|
|
|
|
|
* becomes
|
|
|
|
|
* r4 = sub (sub (sub r0 r1) r1) r0
|
|
|
|
|
*
|
|
|
|
|
* if r4 is the only register listed as needing to be kept.
|
|
|
|
|
*
|
|
|
|
|
*)
|
|
|
|
|
Definition translate_instrs_def:
|
|
|
|
|
(translate_instrs f emap reg_to_keep [] = (<| cmnd := []; term := Unreachable |>, emap)) ∧
|
|
|
|
|
(translate_instrs f emap reg_to_keep (i :: is) =
|
|
|
|
|
case classify_instr i of
|
|
|
|
|
| Exp r t =>
|
|
|
|
|
let x = translate_reg r t in
|
|
|
|
|
let e = translate_instr_to_exp emap i in
|
|
|
|
|
if r ∈ reg_to_keep then
|
|
|
|
|
let (b, emap') = translate_instrs f (emap |+ (r, Var x)) reg_to_keep is in
|
|
|
|
|
(b with cmnd := Move [(x, e)] :: b.cmnd, emap')
|
|
|
|
|
else
|
|
|
|
|
translate_instrs f (emap |+ (r, e)) reg_to_keep is
|
|
|
|
|
| Non_exp =>
|
|
|
|
|
let (b, emap') = translate_instrs f emap reg_to_keep is in
|
|
|
|
|
(b with cmnd := translate_instr_to_inst emap i :: b.cmnd, emap')
|
|
|
|
|
| Term =>
|
|
|
|
|
(<| cmnd := []; term := translate_instr_to_term f emap i |>, emap)
|
|
|
|
|
(* TODO *)
|
|
|
|
|
| Call => ARB)
|
|
|
|
|
End
|
|
|
|
|
|
|
|
|
|
Definition dest_label_def:
|
|
|
|
|
dest_label (Lab s) = s
|
|
|
|
|
End
|
|
|
|
|
|
|
|
|
|
Definition dest_phi_def:
|
|
|
|
|
dest_phi (Phi r t largs) = (r, t, largs)
|
|
|
|
|
End
|
|
|
|
|
|
|
|
|
|
Definition translate_label_opt_def:
|
|
|
|
|
(translate_label_opt f entry None = Lab_name f entry) ∧
|
|
|
|
|
(translate_label_opt f entry (Some l) = translate_label f l)
|
|
|
|
|
End
|
|
|
|
|
|
|
|
|
|
Definition translate_header_def:
|
|
|
|
|
(translate_header f entry Entry = []) ∧
|
|
|
|
|
(translate_header f entry (Head phis _) =
|
|
|
|
|
map
|
|
|
|
|
(λ(r, t, largs).
|
|
|
|
|
(translate_reg r t,
|
|
|
|
|
map (λ(l, arg). (translate_label_opt f entry l, translate_arg fempty arg t)) largs))
|
|
|
|
|
(map dest_phi phis))
|
|
|
|
|
End
|
|
|
|
|
|
|
|
|
|
Definition translate_block_def:
|
|
|
|
|
translate_block f entry_n emap regs_to_keep (l, b) =
|
|
|
|
|
let (b', emap') = translate_instrs f emap regs_to_keep b.body in
|
|
|
|
|
((Lab_name f (the (option_map dest_label l) entry_n),
|
|
|
|
|
(translate_header f entry_n b.h, b')),
|
|
|
|
|
emap')
|
|
|
|
|
End
|
|
|
|
|
|
|
|
|
|
(* Given a label and phi node, get the assignment for that incoming label. It's
|
|
|
|
|
* convenient to return a list, but we expect there to be exactly 1 element. *)
|
|
|
|
|
Definition build_move_for_lab_def:
|
|
|
|
|
build_move_for_lab l (r, les) =
|
|
|
|
|
let les = filter (λ(l', e). l = l') les in
|
|
|
|
|
map (λ(l', e). (r,e)) les
|
|
|
|
|
End
|
|
|
|
|
|
|
|
|
|
(* Given a list of phis and a label, get the move corresponding to entering
|
|
|
|
|
* the block targeted by l_to from block l_from *)
|
|
|
|
|
Definition generate_move_block_def:
|
|
|
|
|
generate_move_block phis l_from l_to =
|
|
|
|
|
let t = Iswitch (Integer 0 (IntegerT 1)) [l_to] in
|
|
|
|
|
case alookup phis l_to of
|
|
|
|
|
| None => <| cmnd := [Move []]; term := t |>
|
|
|
|
|
| Some (phis, _) =>
|
|
|
|
|
<| cmnd := [Move (flat (map (build_move_for_lab l_from) phis))];
|
|
|
|
|
term := t |>
|
|
|
|
|
End
|
|
|
|
|
|
|
|
|
|
Definition label_name_def:
|
|
|
|
|
label_to_name (Lab_name _ l) = l
|
|
|
|
|
End
|
|
|
|
|
|
|
|
|
|
(* Given association list of labels and phi-block pairs, and a particular block,
|
|
|
|
|
* build the new move blocks for its terminator *)
|
|
|
|
|
Definition generate_move_blocks_def:
|
|
|
|
|
generate_move_blocks f used_names bs (l_from, (_, body)) =
|
|
|
|
|
case body.term of
|
|
|
|
|
| Iswitch e ls =>
|
|
|
|
|
let (used_names, new_names) = gen_names used_names (map label_to_name ls) in
|
|
|
|
|
let mb = map2 (λl_to new. (Lab_name f new, generate_move_block bs l_from l_to)) ls new_names in
|
|
|
|
|
(used_names, (l_from, body with term := Iswitch e (map fst mb)) :: mb)
|
|
|
|
|
End
|
|
|
|
|
|
|
|
|
|
Definition generate_move_blocks_list_def:
|
|
|
|
|
(generate_move_blocks_list f used_names bs [] = (used_names, [])) ∧
|
|
|
|
|
(generate_move_blocks_list f used_names bs (b::bs') =
|
|
|
|
|
let (used_names, new_blocks) = generate_move_blocks f used_names bs b in
|
|
|
|
|
let (used_names, new_blocks2) =
|
|
|
|
|
generate_move_blocks_list f used_names bs bs'
|
|
|
|
|
in
|
|
|
|
|
(used_names, new_blocks :: new_blocks2))
|
|
|
|
|
End
|
|
|
|
|
|
|
|
|
|
(* Given an association list of labels and phi-block pairs, remove the phi's,
|
|
|
|
|
* by generating an extra block along each control flow edge that does the move
|
|
|
|
|
* corresponding to the relevant phis. *)
|
|
|
|
|
Definition remove_phis_def:
|
|
|
|
|
remove_phis f used_names bs = flat (snd (generate_move_blocks_list f used_names bs bs))
|
|
|
|
|
End
|
|
|
|
|
|
|
|
|
|
Definition translate_param_def:
|
|
|
|
|
translate_param (t, r) = translate_reg r t
|
|
|
|
|
End
|
|
|
|
|
|
|
|
|
|
Definition translate_def_def:
|
|
|
|
|
translate_def (Lab f) d =
|
|
|
|
|
let used_names = ARB in
|
|
|
|
|
let entry_name = gen_name used_names "entry" in
|
|
|
|
|
(* TODO *)
|
|
|
|
|
let regs_to_keep = UNIV in
|
|
|
|
|
(* We thread a mapping from register names to expressions through. This
|
|
|
|
|
* works assuming that the blocks are in a good ordering, which must exist
|
|
|
|
|
* because the LLVM is in SSA form, and so each definition must dominate all
|
|
|
|
|
* uses.
|
|
|
|
|
* *)
|
|
|
|
|
let (bs, emap) =
|
|
|
|
|
foldl
|
|
|
|
|
(λ(bs, emap) b.
|
|
|
|
|
let (b', emap') = translate_block f entry_name emap regs_to_keep b in
|
|
|
|
|
(b'::bs, emap'))
|
|
|
|
|
([], fempty) d.blocks
|
|
|
|
|
in
|
|
|
|
|
<| params := map translate_param d.params;
|
|
|
|
|
(* TODO: calculate these from the produced llair, and not the llvm *)
|
|
|
|
|
locals := ARB;
|
|
|
|
|
entry := Lab_name f entry_name;
|
|
|
|
|
cfg := remove_phis f used_names (reverse bs);
|
|
|
|
|
freturn := ARB;
|
|
|
|
|
fthrow := ARB |>
|
|
|
|
|
End
|
|
|
|
|
|
|
|
|
|
export_theory ();
|