You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

526 lines
17 KiB

(*
* Copyright (c) Facebook, Inc. and its affiliates.
*
* This source code is licensed under the MIT license found in the
* LICENSE file in the root directory of this source tree.
*)
(* Define SSA form and the concept of variable liveness, and then show how SSA
* simplifies it *)
open HolKernel boolLib bossLib Parse;
open pred_setTheory listTheory rich_listTheory;
open settingsTheory miscTheory llvmTheory llvm_propTheory;
new_theory "llvm_ssa";
numLib.prefer_num ();
(* ----- Static paths through a program *)
Definition inc_pc_def:
inc_pc ip = ip with i := inc_bip ip.i
End
(* The set of program counters the given instruction and starting point can
* immediately reach, within a function *)
Definition instr_next_ips_def:
(instr_next_ips (Ret _) ip = {})
(instr_next_ips (Br _ l1 l2) ip =
{ <| f := ip.f; b := Some l; i := Phi_ip ip.b |> | l | l {l1; l2} })
(instr_next_ips (Invoke _ _ _ _ l1 l2) ip =
{ <| f := ip.f; b := Some l; i := Phi_ip ip.b |> | l | l {l1; l2} })
(instr_next_ips Unreachable ip = {})
(instr_next_ips (Exit _) ip = {})
(instr_next_ips (Sub _ _ _ _ _ _) ip = { inc_pc ip })
(instr_next_ips (Extractvalue _ _ _) ip = { inc_pc ip })
(instr_next_ips (Insertvalue _ _ _ _) ip = { inc_pc ip })
(instr_next_ips (Alloca _ _ _) ip = { inc_pc ip })
(instr_next_ips (Load _ _ _) ip = { inc_pc ip })
(instr_next_ips (Store _ _) ip = { inc_pc ip })
(instr_next_ips (Gep _ _ _ _) ip = { inc_pc ip })
(instr_next_ips (Cast _ _ _ _) ip = { inc_pc ip })
(instr_next_ips (Icmp _ _ _ _ _) ip = { inc_pc ip })
(instr_next_ips (Call _ _ _ _) ip = { inc_pc ip })
(instr_next_ips (Cxa_allocate_exn _ _) ip = { inc_pc ip })
(* TODO: revisit throw when dealing with exceptions *)
(instr_next_ips (Cxa_throw _ _ _) ip = { })
(instr_next_ips (Cxa_begin_catch _ _) ip = { inc_pc ip })
(instr_next_ips (Cxa_end_catch) ip = { inc_pc ip })
(instr_next_ips (Cxa_get_exception_ptr _ _) ip = { inc_pc ip })
End
Inductive next_ips:
(∀prog ip i l i2.
get_instr prog ip (Inl i)
l instr_next_ips i ip
get_instr prog l i2
next_ips prog ip l)
(∀prog ip from_l phis i2.
get_instr prog ip (Inr (from_l, phis))
get_instr prog (inc_pc ip) i2
next_ips prog ip (inc_pc ip))
End
(* The path is a list of program counters that represent a statically feasible
* path through a function *)
Inductive good_path:
(∀prog. good_path prog [])
(∀prog ip i.
get_instr prog ip i
good_path prog [ip])
(∀prog path ip1 ip2.
ip2 next_ips prog ip1
good_path prog (ip2::path)
good_path prog (ip1::ip2::path))
End
Theorem next_ips_same_func:
∀prog ip1 ip2. ip2 next_ips prog ip1 ip1.f = ip2.f
Proof
rw [next_ips_cases, IN_DEF, get_instr_cases, inc_pc_def, inc_bip_def] >> rw [] >>
Cases_on `el idx b.body` >> fs [instr_next_ips_def, inc_pc_def, inc_bip_def]
QED
Theorem good_path_same_func:
∀prog path. good_path prog path ∀ip1 ip2. mem ip1 path mem ip2 path ip1.f = ip2.f
Proof
ho_match_mp_tac good_path_ind >> rw [] >>
metis_tac [next_ips_same_func]
QED
Theorem good_path_prefix:
∀prog path path'. good_path prog path path' path good_path prog path'
Proof
Induct_on `path'` >> rw []
>- simp [Once good_path_cases] >>
pop_assum mp_tac >> CASE_TAC >> rw [] >>
qpat_x_assum `good_path _ _` mp_tac >>
simp [Once good_path_cases] >> rw [] >> fs []
>- (simp [Once good_path_cases] >> metis_tac []) >>
first_x_assum drule >> rw [] >>
simp [Once good_path_cases] >>
Cases_on `path'` >> fs [next_ips_cases, IN_DEF] >>
metis_tac []
QED
Theorem good_path_append:
!prog p1 p2.
good_path prog (p1++p2)
good_path prog p1 good_path prog p2
(p1 [] p2 [] HD p2 next_ips prog (last p1))
Proof
Induct_on `p1` >> rw []
>- metis_tac [good_path_rules] >>
Cases_on `p1` >> Cases_on `p2` >> rw []
>- metis_tac [good_path_rules]
>- (
simp [Once good_path_cases] >>
metis_tac [good_path_rules, next_ips_cases, IN_DEF])
>- metis_tac [good_path_rules] >>
rename1 `ip1::ip2::(ips1++ip3::ips2)` >>
first_x_assum (qspecl_then [`prog`, `[ip3]++ips2`] mp_tac) >>
rw [] >> simp [Once good_path_cases, LAST_DEF] >> rw [] >>
eq_tac >> rw []
>- metis_tac [good_path_rules]
>- (qpat_x_assum `good_path _ [_;_]` mp_tac >> simp [Once good_path_cases])
>- metis_tac [good_path_rules, next_ips_cases, IN_DEF]
>- metis_tac [good_path_rules]
>- (qpat_x_assum `good_path _ (ip1::ip2::ips1)` mp_tac >> simp [Once good_path_cases])
>- (qpat_x_assum `good_path _ (ip1::ip2::ips1)` mp_tac >> simp [Once good_path_cases])
QED
(* ----- Helper functions to get registers out of instructions ----- *)
Definition arg_to_regs_def:
(arg_to_regs (Constant _) = {})
(arg_to_regs (Variable r) = {r})
End
(* The registers that an instruction uses *)
Definition instr_uses_def:
(instr_uses (Ret (_, a)) = arg_to_regs a)
(instr_uses (Br a _ _) = arg_to_regs a)
(instr_uses (Invoke _ _ a targs _ _) =
arg_to_regs a BIGUNION (set (map (arg_to_regs o snd) targs)))
(instr_uses Unreachable = {})
(instr_uses (Exit a) = arg_to_regs a)
(instr_uses (Sub _ _ _ _ a1 a2) =
arg_to_regs a1 arg_to_regs a2)
(instr_uses (Extractvalue _ (_, a) _) = arg_to_regs a)
(instr_uses (Insertvalue _ (_, a1) (_, a2) _) =
arg_to_regs a1 arg_to_regs a2)
(instr_uses (Alloca _ _ (_, a)) = arg_to_regs a)
(instr_uses (Load _ _ (_, a)) = arg_to_regs a)
(instr_uses (Store (_, a1) (_, a2)) =
arg_to_regs a1 arg_to_regs a2)
(instr_uses (Gep _ _ (_, a) targs) =
arg_to_regs a BIGUNION (set (map (arg_to_regs o snd) targs)))
(instr_uses (Cast _ _ (_, a) _) = arg_to_regs a)
(instr_uses (Icmp _ _ _ a1 a2) =
arg_to_regs a1 arg_to_regs a2)
(instr_uses (Call _ _ _ targs) =
BIGUNION (set (map (arg_to_regs o snd) targs)))
(instr_uses (Cxa_allocate_exn _ a) = arg_to_regs a)
(instr_uses (Cxa_throw a1 a2 a3) =
arg_to_regs a1 arg_to_regs a2 arg_to_regs a3)
(instr_uses (Cxa_begin_catch _ a) = arg_to_regs a)
(instr_uses (Cxa_end_catch) = { })
(instr_uses (Cxa_get_exception_ptr _ a) = arg_to_regs a)
End
Definition phi_uses_def:
phi_uses from_l (Phi _ _ entries) =
case alookup entries from_l of
| None => {}
| Some a => arg_to_regs a
End
Inductive uses:
(∀prog ip i r.
get_instr prog ip (Inl i)
r instr_uses i
uses prog ip r)
(∀prog ip from_l phis r.
get_instr prog ip (Inr (from_l, phis))
r BIGUNION (set (map (phi_uses from_l) phis))
uses prog ip r)
End
(* The registers that an instruction assigns *)
Definition instr_assigns_def:
(instr_assigns (Invoke r _ _ _ _ _) = {r})
(instr_assigns (Sub r _ _ _ _ _) = {r})
(instr_assigns (Extractvalue r _ _) = {r})
(instr_assigns (Insertvalue r _ _ _) = {r})
(instr_assigns (Alloca r _ _) = {r})
(instr_assigns (Load r _ _) = {r})
(instr_assigns (Gep r _ _ _) = {r})
(instr_assigns (Cast r _ _ _) = {r})
(instr_assigns (Icmp r _ _ _ _) = {r})
(instr_assigns (Call r _ _ _) = {r})
(instr_assigns (Cxa_allocate_exn r _) = {r})
(instr_assigns (Cxa_begin_catch r _) = {r})
(instr_assigns (Cxa_get_exception_ptr r _) = {r})
(instr_assigns _ = {})
End
Definition phi_assigns_def:
phi_assigns (Phi r _ _) = {r}
End
Inductive assigns:
(∀prog ip i r.
get_instr prog ip (Inl i)
r instr_assigns i
assigns prog ip r)
(∀prog ip from_l phis r.
get_instr prog ip (Inr (from_l, phis))
r BIGUNION (set (map phi_assigns phis))
assigns prog ip r)
End
(* ----- SSA form ----- *)
Definition entry_ip_def:
entry_ip fname = <| f := fname; b := None; i := Offset 0 |>
End
Definition reachable_def:
reachable prog ip
∃path. good_path prog (entry_ip ip.f :: path) last (entry_ip ip.f :: path) = ip
End
(* To get to ip2 from the entry, you must go through ip1 *)
Definition dominates_def:
dominates prog ip1 ip2
∀path.
good_path prog (entry_ip ip2.f :: path)
last (entry_ip ip2.f :: path) = ip2
mem ip1 (front (entry_ip ip2.f :: path))
End
Definition is_ssa_def:
is_ssa prog
(* Operate function by function *)
(∀fname.
(* No register is assigned in two different instructions *)
(∀r ip1 ip2.
r assigns prog ip1 r assigns prog ip2 ip1.f = fname ip2.f = fname
ip1 = ip2))
(* Each use is dominated by its assignment *)
(∀ip1 r. r uses prog ip1 ∃ip2. ip2.f = ip1.f r assigns prog ip2 dominates prog ip2 ip1)
End
Theorem dominates_trans:
∀prog ip1 ip2 ip3.
dominates prog ip1 ip2 dominates prog ip2 ip3 dominates prog ip1 ip3
Proof
rw [dominates_def] >> simp [FRONT_DEF] >> rw []
>- (first_x_assum (qspec_then `[]` mp_tac) >> rw []) >>
first_x_assum drule >> rw [] >>
qpat_x_assum `mem _ (front _)` mp_tac >>
simp [Once MEM_EL] >> rw [] >> fs [EL_FRONT] >>
first_x_assum (qspec_then `take n path` mp_tac) >> simp [LAST_DEF] >>
rw [] >> fs [entry_ip_def]
>- (fs [Once good_path_cases] >> rw [] >> fs [next_ips_cases, IN_DEF]) >>
rfs [EL_CONS] >>
`?m. n = Suc m` by (Cases_on `n` >> rw []) >>
rw [] >> rfs [] >>
`(el m path).f = ip3.f`
by (
irule good_path_same_func >>
qexists_tac `<| f:= ip3.f; b := NONE; i := Offset 0|> :: path` >>
qexists_tac `prog` >>
conj_tac >- rw [EL_MEM] >>
metis_tac [MEM_LAST]) >>
fs [] >> qpat_x_assum `_ _` mp_tac >> impl_tac
>- (
irule good_path_prefix >> HINT_EXISTS_TAC >> rw [] >>
metis_tac [take_is_prefix]) >>
rw [] >> drule MEM_FRONT >> rw [] >>
fs [MEM_EL, LENGTH_FRONT] >> rfs [EL_TAKE] >> rw [] >>
disj2_tac >> qexists_tac `n'` >> rw [] >>
irule (GSYM EL_FRONT) >>
rw [NULL_EQ, LENGTH_FRONT]
QED
Theorem dominates_unreachable:
∀prog ip1 ip2. ¬reachable prog ip2 dominates prog ip1 ip2
Proof
rw [dominates_def, reachable_def] >>
metis_tac []
QED
Theorem dominates_antisym_lem:
∀prog ip1 ip2. dominates prog ip1 ip2 dominates prog ip2 ip1 ¬reachable prog ip1
Proof
rw [dominates_def, reachable_def] >> CCONTR_TAC >> fs [] >>
Cases_on `ip1 = entry_ip ip1.f` >> fs []
>- (
first_x_assum (qspec_then `[]` mp_tac) >> rw [] >>
fs [Once good_path_cases, IN_DEF, next_ips_cases] >>
metis_tac []) >>
`path []` by (Cases_on `path` >> fs []) >>
`(OLEAST n. n < length path el n path = ip1) None`
by (
rw [whileTheory.OLEAST_EQ_NONE] >>
qexists_tac `PRE (length path)` >> rw [] >>
fs [LAST_DEF, LAST_EL] >>
Cases_on `path` >> fs []) >>
qabbrev_tac `path1 = splitAtPki (\n ip. ip = ip1) (\x y. x) path` >>
first_x_assum (qspec_then `path1 ++ [ip1]` mp_tac) >>
simp [] >>
conj_asm1_tac >> rw []
>- (
irule good_path_prefix >>
HINT_EXISTS_TAC >> rw [] >>
unabbrev_all_tac >> rw [splitAtPki_EQN] >>
CASE_TAC >> rw [] >>
fs [whileTheory.OLEAST_EQ_SOME] >>
rw [GSYM SNOC_APPEND, SNOC_EL_TAKE] >>
metis_tac [take_is_prefix])
>- rw [LAST_DEF] >>
simp [GSYM SNOC_APPEND, FRONT_SNOC, FRONT_DEF] >>
CCONTR_TAC >> fs [MEM_EL]
>- (
first_x_assum (qspec_then `[]` mp_tac) >>
fs [entry_ip_def, Once good_path_cases, IN_DEF, next_ips_cases] >>
metis_tac []) >>
rw [] >>
rename [`n1 < length _`, `last _ = el n path`] >>
first_x_assum (qspec_then `take (Suc n1) path1` mp_tac) >> rw []
>- (
irule good_path_prefix >> HINT_EXISTS_TAC >> rw [entry_ip_def]
>- (
irule good_path_same_func >>
qexists_tac `entry_ip (el n path).f::(path1 ++ [el n path])` >>
qexists_tac `prog` >> rw [EL_MEM]) >>
metis_tac [IS_PREFIX_APPEND3, take_is_prefix, IS_PREFIX_TRANS])
>- (rw [LAST_DEF] >> fs []) >>
rw [METIS_PROVE [] ``~x y (x y)``] >>
simp [EL_FRONT] >>
rename [`n2 < Suc _`] >>
Cases_on `¬(0 < n2)` >> rw [EL_CONS]
>- (
fs [entry_ip_def] >>
`(el n path).f = (el n1 path1).f` suffices_by metis_tac [] >>
irule good_path_same_func >>
qexists_tac `<|f := (el n path).f; b := None; i := Offset 0|> ::(path1 ++ [el n path])` >>
qexists_tac `prog` >>
rw [EL_MEM]) >>
fs [EL_TAKE, Abbr `path1`, splitAtPki_EQN] >>
CASE_TAC >> rw [] >> fs []
>- metis_tac [] >>
fs [whileTheory.OLEAST_EQ_SOME] >>
rfs [LENGTH_TAKE] >>
`PRE n2 < x` by decide_tac >>
first_x_assum drule >>
rw [EL_TAKE]
QED
Theorem dominates_antisym:
∀prog ip1 ip2. reachable prog ip1 dominates prog ip1 ip2 ¬dominates prog ip2 ip1
Proof
metis_tac [dominates_antisym_lem]
QED
Theorem dominates_irrefl:
∀prog ip. reachable prog ip ¬dominates prog ip ip
Proof
metis_tac [dominates_antisym]
QED
(* ----- Liveness ----- *)
Definition live_def:
live prog ip =
{ r | ∃path.
good_path prog (ip::path)
r uses prog (last (ip::path))
∀ip2. ip2 set (front (ip::path)) r assigns prog ip2 }
End
Theorem get_instr_live:
∀prog ip instr.
get_instr prog ip instr
uses prog ip live prog ip
Proof
rw [live_def, SUBSET_DEF] >>
qexists_tac `[]` >> rw [Once good_path_cases] >>
qexists_tac `instr` >> simp [] >> metis_tac [IN_DEF]
QED
Triviality set_rw:
∀s P. (∀x. x s P x) s = P
Proof
rw [] >> eq_tac >> rw [IN_DEF] >> metis_tac []
QED
Theorem live_gen_kill:
∀prog ip ip'.
live prog ip =
BIGUNION {live prog ip' | ip' | ip' next_ips prog ip} DIFF assigns prog ip uses prog ip
Proof
rw [live_def, EXTENSION] >> eq_tac >> rw []
>- (
Cases_on `path` >> fs [] >>
rename1 `ip::ip2::path` >>
qpat_x_assum `good_path _ _` mp_tac >> simp [Once good_path_cases] >> rw [] >>
Cases_on `x uses prog ip` >> fs [] >> simp [set_rw, PULL_EXISTS] >>
qexists_tac `ip2` >> qexists_tac `path` >> rw [])
>- (
fs [] >>
qexists_tac `ip'::path` >> rw [] >>
simp [Once good_path_cases])
>- (
qexists_tac `[]` >> rw [] >>
fs [Once good_path_cases, uses_cases, IN_DEF] >>
metis_tac [])
QED
Theorem ssa_dominates_live_range_lem:
∀prog r ip1 ip2.
is_ssa prog ip1.f = ip2.f r assigns prog ip1 r live prog ip2
dominates prog ip1 ip2
Proof
rw [dominates_def, is_ssa_def, live_def] >>
`path [] (last path).f = ip2.f`
by (
rw [] >>
irule good_path_same_func >>
qexists_tac `ip2::path` >> rw [] >>
Cases_on `path` >> fs [MEM_LAST] >> metis_tac []) >>
first_x_assum drule >> rw [] >>
first_x_assum (qspec_then `path'++path` mp_tac) >>
impl_tac
>- (
fs [LAST_DEF] >> rw [] >> fs []
>- (
simp_tac std_ss [GSYM APPEND, good_path_append] >> rw []
>- (
qpat_x_assum `good_path _ (_::_)` mp_tac >>
qpat_x_assum `good_path _ (_::_)` mp_tac >>
simp [Once good_path_cases] >>
metis_tac [])
>- (
simp [LAST_DEF] >>
qpat_x_assum `good_path _ (_::_)` mp_tac >>
qpat_x_assum `good_path _ (_::_)` mp_tac >>
simp [Once good_path_cases] >>
rw [] >> rw []))
>- (Cases_on `path` >> fs [])) >>
rw [] >>
`ip2'.f = ip2.f`
by (
irule good_path_same_func >>
qexists_tac `entry_ip ip2.f::path'` >>
qexists_tac `prog` >>
conj_tac
>- (
Cases_on `path` >>
full_simp_tac std_ss [GSYM APPEND, FRONT_APPEND, APPEND_NIL, LAST_CONS]
>- metis_tac [MEM_FRONT] >>
fs [] >> metis_tac [])
>- metis_tac [MEM_LAST]) >>
`ip2' = ip1` by metis_tac [] >>
rw [] >>
Cases_on `path` >> fs [] >>
full_simp_tac std_ss [GSYM APPEND, FRONT_APPEND] >> fs [] >> rw [FRONT_DEF] >> fs []
>- metis_tac []
>- (
`mem ip1 path' = mem ip1 (front path' ++ [last path'])` by metis_tac [APPEND_FRONT_LAST] >>
fs [LAST_DEF] >>
metis_tac [])
>- metis_tac []
>- metis_tac []
QED
Theorem ssa_dominates_live_range:
∀prog r ip.
is_ssa prog r uses prog ip
∃ip1. ip1.f = ip.f r assigns prog ip1
∀ip2. ip2.f = ip.f r live prog ip2
dominates prog ip1 ip2
Proof
rw [] >> drule ssa_dominates_live_range_lem >> rw [] >>
fs [is_ssa_def] >>
first_assum drule >> rw [] >> metis_tac []
QED
Theorem reachable_dominates_same_func:
∀prog ip1 ip2. reachable prog ip2 dominates prog ip1 ip2 ip1.f = ip2.f
Proof
rw [reachable_def, dominates_def] >> res_tac >>
irule good_path_same_func >>
metis_tac [MEM_LAST, MEM_FRONT]
QED
Theorem next_ips_reachable:
∀prog ip1 ip2. reachable prog ip1 ip2 next_ips prog ip1 reachable prog ip2
Proof
rw [] >> imp_res_tac next_ips_same_func >>
fs [reachable_def] >>
qexists_tac `path ++ [ip2]` >>
simp_tac std_ss [GSYM APPEND, LAST_APPEND_CONS, LAST_CONS] >>
simp [good_path_append] >>
simp [Once good_path_cases] >>
fs [next_ips_cases, IN_DEF] >>
metis_tac []
QED
export_theory ();