You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

796 lines
28 KiB

(*
* Copyright (c) Facebook, Inc. and its affiliates.
*
* This source code is licensed under the MIT license found in the
* LICENSE file in the root directory of this source tree.
*)
(* Properties of the mini-LLVM model *)
open HolKernel boolLib bossLib Parse;
open pairTheory listTheory rich_listTheory arithmeticTheory wordsTheory;
open pred_setTheory finite_mapTheory;
open logrootTheory numposrepTheory;
open settingsTheory llvmTheory;
new_theory "llvm_prop";
numLib.prefer_num();
(* ----- Theorems about list library functions ----- *)
(* Could be upstreamed to HOL *)
Theorem dropWhile_map:
∀P f l. dropWhile P (map f l) = map f (dropWhile (P o f) l)
Proof
Induct_on `l` >> rw []
QED
Theorem dropWhile_prop:
∀P l x. x < length l - length (dropWhile P l) P (el x l)
Proof
Induct_on `l` >> rw [] >>
Cases_on `x` >> fs []
QED
Theorem dropWhile_rev_take:
∀P n l x.
let len = length (dropWhile P (reverse (take n l))) in
x + len < n n length l P (el (x + len) l)
Proof
rw [] >>
`P (el ((n - 1 - x - length (dropWhile P (reverse (take n l))))) (reverse (take n l)))`
by (irule dropWhile_prop >> simp [LENGTH_REVERSE]) >>
rfs [EL_REVERSE, EL_TAKE, PRE_SUB1]
QED
Theorem take_replicate:
∀m n x. take m (replicate n x) = replicate (min m n) x
Proof
Induct_on `n` >> rw [TAKE_def, MIN_DEF] >> fs [] >>
Cases_on `m` >> rw []
QED
Theorem length_take_less_eq:
∀n l. length (take n l) n
Proof
Induct_on `l` >> rw [TAKE_def] >>
Cases_on `n` >> fs []
QED
Theorem flat_drop:
∀n m ls. flat (drop m ls) = drop (length (flat (take m ls))) (flat ls)
Proof
Induct_on `ls` >> rw [DROP_def, DROP_APPEND] >>
irule (GSYM DROP_LENGTH_TOO_LONG) >> simp []
QED
Theorem take_is_prefix:
∀n l. take n l l
Proof
Induct_on `l` >> rw [TAKE_def]
QED
Theorem sum_prefix:
∀l1 l2. l1 l2 sum l1 sum l2
Proof
Induct >> rw [] >> Cases_on `l2` >> fs []
QED
Theorem flookup_fdiff:
∀m s k.
flookup (fdiff m s) k =
if k s then None else flookup m k
Proof
rw [FDIFF_def, FLOOKUP_DRESTRICT] >> fs []
QED
(* ----- Theorems about log ----- *)
(* Could be upstreamed to HOL *)
Theorem mul_div_bound:
∀m n. n 0 m - (n - 1) n * (m DIV n) n * (m DIV n) m
Proof
rw [] >>
`0 < n` by decide_tac >>
drule DIVISION >> disch_then (qspec_then `m` mp_tac) >>
decide_tac
QED
Theorem exp_log_bound:
∀b n. 1 < b n 0 n DIV b + 1 b ** (log b n) b ** (log b n) n
Proof
rw [] >> `0 < n` by decide_tac >>
drule LOG >> disch_then drule >> rw [] >>
fs [ADD1, EXP_ADD] >>
simp [DECIDE ``∀x y. x + 1 y x < y``] >>
`∃x. b = Suc x` by intLib.COOPER_TAC >>
`b * (n DIV b) < b * b ** log b n` suffices_by metis_tac [LESS_MULT_MONO] >>
pop_assum kall_tac >>
`b 0` by decide_tac >>
drule mul_div_bound >> disch_then (qspec_then `n` mp_tac) >>
decide_tac
QED
Theorem log_base_power:
∀n b. 1 < b log b (b ** n) = n
Proof
Induct >> rw [EXP, LOG_1] >>
Cases_on `n` >> rw [LOG_BASE] >>
first_x_assum drule >> rw [] >>
simp [Once EXP, LOG_MULT]
QED
Theorem log_change_base_power:
∀m n b. 1 < b m 0 n 0 log (b ** n) m = log b m DIV n
Proof
rw [] >> irule LOG_UNIQUE >>
rw [ADD1, EXP_MUL, LEFT_ADD_DISTRIB] >>
qmatch_goalsub_abbrev_tac `x DIV _` >>
drule mul_div_bound >> disch_then (qspec_then `x` mp_tac) >> rw []
>- (
irule LESS_LESS_EQ_TRANS >>
qexists_tac `b ** (x+1)` >> rw [] >>
unabbrev_all_tac >>
simp [EXP_ADD] >>
`b * (m DIV b + 1) b * b ** log b m`
by metis_tac [exp_log_bound, LESS_MONO_MULT, MULT_COMM] >>
`m < b * (m DIV b + 1)` suffices_by decide_tac >>
simp [LEFT_ADD_DISTRIB] >>
`b 0` by decide_tac >>
`m - (b - 1) b * (m DIV b)` by metis_tac [mul_div_bound] >>
fs [])
>- (
irule LESS_EQ_TRANS >>
qexists_tac `b ** (log b m)` >> rw [] >>
unabbrev_all_tac >>
metis_tac [exp_log_bound])
QED
(* ----- Theorems about word stuff ----- *)
Theorem l2n_padding:
∀ws n. l2n 256 (ws ++ map w2n (replicate n 0w)) = l2n 256 ws
Proof
Induct >> rw [l2n_def] >>
Induct_on `n` >> rw [l2n_def]
QED
Theorem l2n_0:
∀l b. b 0 every ($> b) l (l2n b l = 0 every ($= 0) l)
Proof
Induct >> rw [l2n_def] >>
eq_tac >> rw []
QED
Theorem mod_n2l:
∀d n. 0 < d map (\x. x MOD d) (n2l d n) = n2l d n
Proof
rw [] >> drule n2l_BOUND >> disch_then (qspec_then `n` mp_tac) >>
qspec_tac (`n2l d n`, `l`) >>
Induct >> rw []
QED
(* ----- Theorems about converting between values and byte lists ----- *)
Theorem le_write_w_length:
∀l x. length (le_write_w l w) = l
Proof
rw [le_write_w_def]
QED
Theorem v2b_size:
∀t v. value_type t v length (value_to_bytes v) = sizeof t
Proof
ho_match_mp_tac value_type_ind >>
rw [value_to_bytes_def, sizeof_def]
>- metis_tac [le_write_w_length]
>- metis_tac [le_write_w_length]
>- metis_tac [le_write_w_length]
>- (Induct_on `vs` >> rw [ADD1] >> fs [])
>- (
pop_assum mp_tac >>
qid_spec_tac `vs` >> qid_spec_tac `ts` >>
ho_match_mp_tac LIST_REL_ind >> rw [])
QED
Theorem b2v_size:
(∀t bs. first_class_type t sizeof t length bs
∃v. bytes_to_value t bs = (v, drop (sizeof t) bs))
(∀n t bs. first_class_type t n * sizeof t length bs
∃vs. read_array n t bs = (vs, drop (n * sizeof t) bs))
(∀ts bs. every first_class_type ts sum (map sizeof ts) length bs
∃vs. read_str ts bs = (vs, drop (sum (map sizeof ts)) bs))
Proof
ho_match_mp_tac bytes_to_value_ind >>
rw [sizeof_def, bytes_to_value_def, le_read_w_def] >>
fs [first_class_type_def]
>- (simp [PAIR_MAP] >> metis_tac [SND])
>- (
pairarg_tac >> rw [] >> pairarg_tac >> rw [] >>
fs [ADD1] >> rw [] >> fs [DROP_DROP_T, LEFT_ADD_DISTRIB])
>- fs [DROP_DROP_T, LEFT_ADD_DISTRIB]
QED
Theorem b2v_smaller:
∀t bs. first_class_type t sizeof t length bs
length (snd (bytes_to_value t bs)) = length bs - sizeof t
Proof
rw [] >> imp_res_tac b2v_size >>
Cases_on `bytes_to_value t bs` >> fs []
QED
Theorem b2v_append:
(∀t bs. first_class_type t sizeof t length bs
bytes_to_value t (bs ++ bs') = (I ## (λx. x ++ bs')) (bytes_to_value t bs))
(∀n t bs. first_class_type t n * sizeof t length bs
∃vs. read_array n t (bs ++ bs') = (I ## (λx. x ++ bs')) (read_array n t bs))
(∀ts bs. every first_class_type ts sum (map sizeof ts) length bs
∃vs. read_str ts (bs ++ bs') = (I ## (λx. x ++ bs')) (read_str ts bs))
Proof
ho_match_mp_tac bytes_to_value_ind >>
rw [sizeof_def, bytes_to_value_def, le_read_w_def] >>
fs [first_class_type_def, TAKE_APPEND, DROP_APPEND,
DECIDE ``!x y. x y x - y = 0n``, ETA_THM]
>- (simp [PAIR_MAP] >> metis_tac [SND])
>- (simp [PAIR_MAP] >> metis_tac [SND])
>- (
rpt (pairarg_tac >> simp []) >> fs [ADD1] >>
BasicProvers.VAR_EQ_TAC >> fs [LEFT_ADD_DISTRIB] >>
first_x_assum irule >>
`sizeof t length bs` by decide_tac >>
imp_res_tac b2v_smaller >> rfs [])
>- (
rpt (pairarg_tac >> simp []) >> fs [ADD1] >>
BasicProvers.VAR_EQ_TAC >> fs [LEFT_ADD_DISTRIB] >>
first_x_assum irule >>
`sizeof t length bs` by decide_tac >>
imp_res_tac b2v_smaller >> rfs [])
QED
Theorem le_read_write:
∀n w bs.
n 0 dimword (:'a) 256 ** n le_read_w n (le_write_w n (w :'a word) bs) = (w, bs)
Proof
rw [le_read_w_def, le_write_w_length]
>- (
`take n (le_write_w n w bs) = le_write_w n w`
by metis_tac [le_write_w_length, TAKE_LENGTH_APPEND] >>
simp [le_write_w_def, w2l_def, l2w_def] >>
Cases_on `w` >> simp [] >> fs [l2n_padding, TAKE_APPEND, take_replicate] >>
simp [MAP_TAKE, MAP_MAP_o, combinTheory.o_DEF, mod_n2l] >>
rename1 `n2l 256 m` >>
`length (n2l 256 m) n`
by (
rw [LENGTH_n2l] >>
`256 = 2 ** 8` by EVAL_TAC >>
ASM_REWRITE_TAC [] >> simp [log_change_base_power, GSYM LESS_EQ] >>
`n2w m 0w` by simp [] >>
drule LOG2_w2n_lt >> rw [] >> fs [bitTheory.LOG2_def, dimword_def] >>
`8 * (log 2 m DIV 8) log 2 m` by metis_tac [mul_div_bound, EVAL ``8 0n``] >>
`LOG 2 (2 ** dimindex (:'a)) LOG 2 (256 ** n)` by simp [LOG_LE_MONO] >>
pop_assum mp_tac >>
`256 = 2 ** 8` by EVAL_TAC >>
ASM_REWRITE_TAC [EXP_MUL] >> simp [log_base_power]) >>
simp [mod_n2l, l2n_n2l, TAKE_LENGTH_TOO_LONG])
>- metis_tac [le_write_w_length, DROP_LENGTH_APPEND]
QED
Theorem le_write_read:
∀n w bs bs'.
256 ** n dimword (:'a)
n length bs
le_read_w n bs = (w:'a word, bs')
le_write_w n w ++ bs' = bs
Proof
rw [le_read_w_def] >>
qmatch_goalsub_abbrev_tac `l2w _ l` >>
`le_write_w n (l2w 256 l) = take n bs` suffices_by metis_tac [TAKE_DROP] >>
simp [le_write_w_def, w2l_l2w] >>
`l2n 256 l < 256 ** n`
by (
`n length bs` by decide_tac >>
metis_tac [l2n_lt, LENGTH_TAKE, LENGTH_MAP, EVAL ``0n < 256``]) >>
fs [] >>
`every ($> 256) l`
by (
simp [EVERY_MAP, Abbr `l`] >> irule EVERY_TAKE >> simp [] >>
rpt (pop_assum kall_tac) >>
Induct_on `bs` >> rw [] >>
Cases_on `h` >> fs []) >>
rw [n2l_l2n]
>- (
rw [TAKE_def, take_replicate] >>
Cases_on `n` >> fs [] >>
rfs [l2n_0] >> unabbrev_all_tac >> fs [EVERY_MAP] >>
ONCE_REWRITE_TAC [GSYM REPLICATE] >>
qmatch_goalsub_abbrev_tac `take n _` >>
qpat_assum `¬(_ < _)` mp_tac >>
qpat_assum `every (\x. 0 = w2n x) _` mp_tac >>
rpt (pop_assum kall_tac) >>
qid_spec_tac `bs` >>
Induct_on `n` >> rw [] >>
Cases_on `bs` >> rw [] >> fs [] >>
Cases_on `h` >> fs [] >>
first_x_assum irule >> rw [] >>
irule MONO_EVERY >>
qexists_tac `(λx. 0 = w2n x)` >> rw []) >>
fs [MAP_TAKE, MAP_MAP_o, combinTheory.o_DEF] >>
`exists (\y. 0 y) l`
by (
fs [l2n_eq_0, combinTheory.o_DEF] >> fs [EXISTS_MEM, EVERY_MEM] >>
qexists_tac `x` >> rfs [MOD_MOD, GREATER_DEF]) >>
simp [LOG_l2n_dropWhile] >>
`length (dropWhile ($= 0) (reverse l)) 0`
by (
Cases_on `l` >> fs [dropWhile_eq_nil, combinTheory.o_DEF, EXISTS_REVERSE]) >>
`0 < length (dropWhile ($= 0) (reverse l))` by decide_tac >>
fs [SUC_PRE] >>
`map n2w l = take n bs`
by (simp [Abbr `l`, MAP_TAKE, MAP_MAP_o, combinTheory.o_DEF, n2w_w2n]) >>
simp [TAKE_TAKE_MIN] >>
`length l = n` by simp [Abbr `l`] >>
`length (dropWhile ($= 0) (reverse l)) n`
by metis_tac [LESS_EQ_TRANS, LENGTH_dropWhile_LESS_EQ, LENGTH_REVERSE] >>
rw [MIN_DEF] >> fs []
>- (
simp [TAKE_APPEND, TAKE_TAKE_MIN, MIN_DEF, take_replicate] >>
`replicate (length l length (dropWhile ($= 0) (reverse l))) 0w =
take (length l (length (dropWhile ($= 0) (reverse l)))) (drop (length (dropWhile ($= 0) (reverse l))) bs)`
suffices_by (rw [] >> irule take_drop_partition >> simp []) >>
rw [LIST_EQ_REWRITE, EL_REPLICATE, EL_TAKE, EL_DROP] >>
`length (dropWhile ($= 0) (reverse l)) =
length (dropWhile (λx. 0 = w2n x) (reverse (take (length l) bs)))`
by (
`reverse l = reverse (take (length l) (map w2n bs))` by metis_tac [] >>
ONCE_ASM_REWRITE_TAC [] >>
qpat_x_assum `Abbrev (l = _)` kall_tac >>
simp [GSYM MAP_TAKE, GSYM MAP_REVERSE, dropWhile_map, combinTheory.o_DEF]) >>
fs [] >>
`x + length (dropWhile (λx. 0 = w2n x) (reverse (take (length l) bs))) < length l` by decide_tac >>
drule (SIMP_RULE std_ss [LET_THM] dropWhile_rev_take) >>
rw [] >>
REWRITE_TAC [GSYM w2n_11, word_0_n2w] >>
simp [])
>- rw [TAKE_APPEND, TAKE_TAKE]
QED
Theorem b2v_v2b:
∀v t bs. value_type t v bytes_to_value t (value_to_bytes v ++ bs) = (v, bs)
Proof
gen_tac >> completeInduct_on `v_size v` >>
rw [] >>
pop_assum mp_tac >> simp [value_type_cases] >>
rw [] >>
rw [bytes_to_value_def, value_to_bytes_def, le_read_write]
>- wordsLib.WORD_DECIDE_TAC
>- (
qmatch_abbrev_tac `_ x = _` >>
`x = (vs, bs)` suffices_by (simp [PAIR_MAP] >> metis_tac [PAIR_EQ, FST, SND]) >>
unabbrev_all_tac >>
qid_spec_tac `bs` >> Induct_on `vs` >> simp [bytes_to_value_def] >>
rw [] >> fs [v_size_def] >>
pairarg_tac >> fs [] >>
pairarg_tac >> fs [] >>
rename1 `value_type t v1` >>
first_x_assum (qspec_then `v_size v1` mp_tac) >> simp [] >>
disch_then (qspec_then `v1` mp_tac) >> simp [] >>
disch_then (qspec_then `t` mp_tac) >> simp [] >>
qmatch_assum_abbrev_tac `bytes_to_value _ (_ ++ bs1 ++ _) = _` >>
disch_then (qspec_then `bs1++bs` mp_tac) >> simp [] >>
unabbrev_all_tac >> strip_tac >> fs [] >>
first_x_assum (qspec_then `bs` mp_tac) >> rw [])
>- (
qmatch_abbrev_tac `_ x = _` >>
`x = (vs, bs)` suffices_by (simp [PAIR_MAP] >> metis_tac [PAIR_EQ, FST, SND]) >>
unabbrev_all_tac >>
pop_assum mp_tac >>
qid_spec_tac `bs` >> qid_spec_tac `ts` >> Induct_on `vs` >> simp [bytes_to_value_def] >>
rw [] >> fs [v_size_def, bytes_to_value_def] >>
pairarg_tac >> fs [] >>
pairarg_tac >> fs [] >>
rename1 `value_type t v1` >>
first_x_assum (qspec_then `v_size v1` mp_tac) >> simp [] >>
disch_then (qspec_then `v1` mp_tac) >> simp [] >>
disch_then (qspec_then `t` mp_tac) >> simp [] >>
qmatch_assum_abbrev_tac `bytes_to_value _ (_ ++ bs1 ++ _) = _` >>
disch_then (qspec_then `bs1++bs` mp_tac) >> simp [] >>
unabbrev_all_tac >> strip_tac >> fs [] >>
first_x_assum drule >> metis_tac [PAIR_EQ])
QED
(* ----- Theorems about insert/extract value and get_offset ----- *)
Theorem can_extract:
∀v indices t.
indices_ok t indices value_type t v extract_value v indices None
Proof
recInduct extract_value_ind >> rw [extract_value_def]
>- (
pop_assum mp_tac >> rw [value_type_cases] >> fs [indices_ok_def] >>
metis_tac [LIST_REL_LENGTH])
>- (
pop_assum mp_tac >> rw [value_type_cases] >> fs [indices_ok_def] >>
metis_tac [EVERY_EL, LIST_REL_EL_EQN]) >>
Cases_on `t` >> fs [indices_ok_def] >> simp [value_type_cases]
QED
Theorem can_insert:
∀v v2 indices t.
indices_ok t indices value_type t v insert_value v v2 indices None
Proof
recInduct insert_value_ind >> rw [insert_value_def]
>- (
pop_assum mp_tac >> rw [value_type_cases] >> fs [indices_ok_def] >>
metis_tac [LIST_REL_LENGTH])
>- (
pop_assum mp_tac >> rw [value_type_cases] >> fs [indices_ok_def] >>
CASE_TAC >> fs [] >> rfs [] >>
metis_tac [EVERY_EL, LIST_REL_EL_EQN]) >>
Cases_on `t` >> fs [indices_ok_def] >> simp [value_type_cases]
QED
Theorem extract_insertvalue:
∀v1 v2 indices v3.
insert_value v1 v2 indices = Some v3
extract_value v3 indices = Some v2
Proof
recInduct insert_value_ind >> rw [insert_value_def, extract_value_def] >>
pop_assum mp_tac >> CASE_TAC >> fs [] >> rfs [] >>
rw [] >> simp [extract_value_def, EL_LUPDATE]
QED
Theorem extract_insertvalue_other:
∀v1 v2 indices1 indices2 v3.
insert_value v1 v2 indices1 = Some v3
¬(indices1 indices2) ¬(indices2 indices1)
extract_value v3 indices2 = extract_value v1 indices2
Proof
recInduct insert_value_ind >> rw [insert_value_def, extract_value_def] >>
qpat_x_assum `_ = SOME _` mp_tac >> CASE_TAC >> rw [] >> rfs [] >>
qpat_x_assum `¬case _ of [] => F | h::t => P h t` mp_tac >>
CASE_TAC >> fs [] >> rename1 `idx::is` >>
fs [extract_value_def] >> rw [EL_LUPDATE]
QED
Theorem insert_extractvalue:
∀v1 indices v2.
extract_value v1 indices = Some v2
insert_value v1 v2 indices = Some v1
Proof
recInduct extract_value_ind >> rw [insert_value_def, extract_value_def] >> fs [] >>
rw [LUPDATE_SAME]
QED
Definition indices_in_range_def:
(indices_in_range t [] T)
(indices_in_range (ArrT n t) (i::is)
i < n indices_in_range t is)
(indices_in_range (StrT ts) (i::is)
i < length ts indices_in_range (el i ts) is)
(indices_in_range _ _ F)
End
Definition extract_type_def:
(extract_type t [] = Some t)
(extract_type (ArrT n t) (i::idx) =
if i < n then
extract_type t idx
else
None)
(extract_type (StrT ts) (i::idx) =
if i < length ts then
extract_type (el i ts) idx
else
None)
(extract_type _ _ = None)
End
(* The strict inequality does not hold because of 0 length arrays *)
Theorem offset_size_leq:
∀t indices n.
indices_in_range t indices get_offset t indices = Some n
n sizeof t
Proof
recInduct get_offset_ind >> rw [get_offset_def, sizeof_def, indices_in_range_def] >>
BasicProvers.EVERY_CASE_TAC >> fs [] >> rw [] >> rfs []
>- (
`x + i * sizeof t (i + 1) * sizeof t` by decide_tac >>
`i + 1 v1` by decide_tac >>
metis_tac [LESS_MONO_MULT, LESS_EQ_TRANS]) >>
rw [MAP_TAKE, ETA_THM] >>
`take (Suc i) (map sizeof ts) = take i (map sizeof ts) ++ [sizeof (el i ts)]`
by rw [GSYM SNOC_EL_TAKE, EL_MAP] >>
`take (Suc i) (map sizeof ts) (map sizeof ts)` by rw [take_is_prefix] >>
drule sum_prefix >> rw [SUM_APPEND]
QED
Theorem value_type_is_fc:
∀t v. value_type t v first_class_type t
Proof
ho_match_mp_tac value_type_ind >> rw [first_class_type_def] >>
fs [LIST_REL_EL_EQN, EVERY_EL]
QED
Theorem extract_type_fc:
∀t is t'. extract_type t is = Some t' first_class_type t first_class_type t'
Proof
recInduct extract_type_ind >> rw [extract_type_def, first_class_type_def] >>
rw [] >> fs [] >> fs [EVERY_EL]
QED
Theorem extract_offset_size:
∀t indices n t'.
extract_type t indices = Some t'
get_offset t indices = Some n
sizeof t' sizeof t - n
Proof
recInduct get_offset_ind >> rw [get_offset_def, extract_type_def] >>
BasicProvers.EVERY_CASE_TAC >> fs [sizeof_def] >> rfs [] >> rw [ETA_THM]
>- (
`sizeof t (v1 i) * sizeof t` suffices_by decide_tac >>
`1 v1 - i` by decide_tac >>
rw []) >>
rw [MAP_TAKE] >>
`sizeof (el i ts) sum (map sizeof ts) (sum (take i (map sizeof ts)))`
suffices_by decide_tac >>
qpat_x_assum `_ < _` mp_tac >> rpt (pop_assum kall_tac) >> qid_spec_tac `i` >>
Induct_on `ts` >> rw [TAKE_def, EL_CONS, PRE_SUB1]
QED
Theorem read_from_offset_extract:
∀t indices n v t'.
indices_in_range t indices
get_offset t indices = Some n
value_type t v
extract_type t indices = Some t'
extract_value v indices = Some (fst (bytes_to_value t' (drop n (value_to_bytes v))))
Proof
recInduct get_offset_ind >>
rw [extract_value_def, get_offset_def, extract_type_def, indices_in_range_def] >>
simp [DROP_0]
>- metis_tac [APPEND_NIL, FST, b2v_v2b] >>
qpat_x_assum `value_type _ _` mp_tac >>
simp [Once value_type_cases] >> rw [] >> simp [extract_value_def] >>
qpat_x_assum `_ = Some n` mp_tac >> CASE_TAC >> rw [] >> rfs [] >>
simp [value_to_bytes_def]
>- (
`value_type t (el i vs)` by metis_tac [EVERY_EL] >>
first_x_assum drule >>
rw [] >> simp [GSYM DROP_DROP_T, ETA_THM] >>
`i * sizeof t = length (flat (take i (map value_to_bytes vs)))`
by (
simp [LENGTH_FLAT, MAP_TAKE, MAP_MAP_o, combinTheory.o_DEF] >>
`map (λx. length (value_to_bytes x)) vs = replicate (length vs) (sizeof t)`
by (
qpat_x_assum `every _ _` mp_tac >> rpt (pop_assum kall_tac) >>
Induct_on `vs` >> rw [v2b_size]) >>
rw [take_replicate, MIN_DEF]) >>
rw [GSYM flat_drop, GSYM MAP_DROP] >>
drule DROP_CONS_EL >> simp [DROP_APPEND] >> disch_then kall_tac >>
`first_class_type t'` by metis_tac [value_type_is_fc, extract_type_fc] >>
`sizeof t' length (drop x (value_to_bytes (el i vs)))`
by (simp [LENGTH_DROP] >> drule v2b_size >> rw [] >> metis_tac [extract_offset_size]) >>
simp [b2v_append])
>- metis_tac [LIST_REL_LENGTH]
>- (
`value_type (el i ts) (el i vs)` by metis_tac [LIST_REL_EL_EQN] >>
first_x_assum drule >>
rw [] >> simp [GSYM DROP_DROP_T, ETA_THM] >>
`sum (map sizeof (take i ts)) = length (flat (take i (map value_to_bytes vs)))`
by (
simp [LENGTH_FLAT, MAP_TAKE, MAP_MAP_o, combinTheory.o_DEF] >>
`map sizeof ts = map (\x. length (value_to_bytes x)) vs`
by (
qpat_x_assum `list_rel _ _ _` mp_tac >> rpt (pop_assum kall_tac) >>
qid_spec_tac `ts` >>
Induct_on `vs` >> rw [] >> rw [v2b_size]) >>
rw []) >>
rw [GSYM flat_drop, GSYM MAP_DROP] >>
`i < length vs` by metis_tac [LIST_REL_LENGTH] >>
drule DROP_CONS_EL >> simp [DROP_APPEND] >> disch_then kall_tac >>
`first_class_type t'` by metis_tac [value_type_is_fc, extract_type_fc] >>
`sizeof t' length (drop x (value_to_bytes (el i vs)))`
by (simp [LENGTH_DROP] >> drule v2b_size >> rw [] >> metis_tac [extract_offset_size]) >>
simp [b2v_append])
QED
(* ----- Theorems about the step function ----- *)
Theorem inc_pc_invariant:
∀p s i. prog_ok p next_instr p s i ¬terminator i state_invariant p s state_invariant p (inc_pc s)
Proof
rw [state_invariant_def, inc_pc_def, allocations_ok_def, globals_ok_def,
stack_ok_def, frame_ok_def, heap_ok_def, EVERY_EL, ip_ok_def]
>- (
qexists_tac `dec` >> qexists_tac `block'` >> rw [] >>
fs [prog_ok_def, next_instr_cases] >> res_tac >> rw [] >>
`s.ip.i length block'.body - 1` suffices_by decide_tac >>
CCONTR_TAC >> fs [] >> rfs [LAST_EL, PRE_SUB1]) >>
metis_tac []
QED
Theorem next_instr_update:
∀p s i r v. next_instr p (update_result r v s) i <=> next_instr p s i
Proof
rw [next_instr_cases, update_result_def]
QED
Theorem update_invariant:
∀r v s. state_invariant p (update_result r v s) state_invariant p s
Proof
rw [update_result_def, state_invariant_def, ip_ok_def, allocations_ok_def,
globals_ok_def, stack_ok_def, heap_ok_def, EVERY_EL, frame_ok_def]
QED
Theorem flookup_set_bytes:
∀poison bytes n h n'.
flookup (set_bytes poison bytes n h) (A n') =
if n n' n' < n + length bytes then
Some (poison, el (n' - n) bytes)
else
flookup h (A n')
Proof
Induct_on `bytes` >> rw [set_bytes_def, EL_CONS, PRE_SUB1] >>
fs [ADD1, FLOOKUP_UPDATE] >>
`n = n'` by decide_tac >>
rw []
QED
Theorem allocate_invariant:
∀p s1 v1 t v2 s2.
state_invariant p s1 allocate s1 v1 t (v2,s2) state_invariant p s2
Proof
rw [allocate_cases, state_invariant_def, ip_ok_def, heap_ok_def,
globals_ok_def, stack_ok_def] >>
rw [] >> fs []
>- (
fs [allocations_ok_def] >> rpt gen_tac >> disch_tac >> fs [is_free_def] >> rw [] >>
metis_tac [INTER_COMM])
>- (
rw [flookup_set_bytes]
>- rw [RIGHT_AND_OVER_OR, EXISTS_OR_THM, interval_to_set_def] >>
eq_tac >> rw [] >> fs [interval_to_set_def] >>
metis_tac [])
>- (fs [is_allocated_def] >> metis_tac [])
>- (fs [EVERY_EL, frame_ok_def] >> rw [] >> metis_tac [])
QED
Theorem set_bytes_invariant:
∀s poison bytes n prog b.
state_invariant prog s is_allocated (b, n, n + length bytes) s.allocations
state_invariant prog (s with heap := set_bytes poison bytes n s.heap)
Proof
rw [state_invariant_def]
>- (fs [allocations_ok_def] >> rw [] >> metis_tac [])
>- (
fs [heap_ok_def, flookup_set_bytes] >> rw [] >>
fs [is_allocated_def, interval_to_set_def, SUBSET_DEF] >>
metis_tac [LESS_EQ_REFL, DECIDE ``!x y. x < x + SUC y``])
>- (fs [globals_ok_def] >> metis_tac [])
>- (fs [stack_ok_def, EVERY_EL, frame_ok_def])
QED
Theorem step_instr_invariant:
∀i s2.
step_instr p s1 i s2 prog_ok p next_instr p s1 i state_invariant p s1
state_invariant p s2
Proof
ho_match_mp_tac step_instr_ind >> rw []
>- ( (* Ret *)
rw [update_invariant] >> fs [state_invariant_def] >> rw []
>- (
fs [stack_ok_def] >> rfs [EVERY_EL, frame_ok_def] >>
first_x_assum (qspec_then `0` mp_tac) >> simp [])
>- (fs [deallocate_def, allocations_ok_def] >> rw [] >> metis_tac [])
>- (
fs [deallocate_def, heap_ok_def] >> rw [flookup_fdiff] >>
eq_tac >> rw []
>- metis_tac [optionTheory.NOT_IS_SOME_EQ_NONE]
>- metis_tac [optionTheory.NOT_IS_SOME_EQ_NONE] >>
fs [allocations_ok_def, stack_ok_def, EXTENSION] >> metis_tac [])
>- (
fs [globals_ok_def, deallocate_def] >> rw [] >>
first_x_assum drule >> rw [] >> fs [is_allocated_def] >>
qexists_tac `b2` >> rw [] >> CCONTR_TAC >> fs [])
>- (
fs [stack_ok_def, EVERY_MEM, frame_ok_def, deallocate_def] >> rfs [] >>
rw []
>- (
res_tac >> rw [] >> qexists_tac `stop` >> rw [] >>
fs [ALL_DISTINCT_APPEND, MEM_FLAT, MEM_MAP] >>
metis_tac [])
>- (
fs [ALL_DISTINCT_APPEND])))
>- ( (* Br *)
fs [state_invariant_def] >> rw []
>- (
rw [ip_ok_def] >> fs [prog_ok_def, NOT_NIL_EQ_LENGTH_NOT_0] >>
qpat_x_assum `flookup _ (Fn "main") = _` kall_tac >>
last_x_assum drule >> disch_then drule >> fs [])
>- (fs [allocations_ok_def] >> metis_tac [])
>- (fs [heap_ok_def] >> metis_tac [])
>- (fs [globals_ok_def] >> metis_tac [])
>- (fs [stack_ok_def, frame_ok_def, EVERY_MEM] >> metis_tac []))
>- ( (* Br *)
fs [state_invariant_def] >> rw []
>- (
rw [ip_ok_def] >> fs [prog_ok_def, NOT_NIL_EQ_LENGTH_NOT_0] >>
qpat_x_assum `flookup _ (Fn "main") = _` kall_tac >>
last_x_assum drule >> disch_then drule >> fs [])
>- (fs [allocations_ok_def] >> metis_tac [])
>- (fs [heap_ok_def] >> metis_tac [])
>- (fs [globals_ok_def] >> metis_tac [])
>- (fs [stack_ok_def, frame_ok_def, EVERY_MEM] >> metis_tac []))
>- (
irule inc_pc_invariant >> rw [next_instr_update, update_invariant]>>
metis_tac [terminator_def])
>- (
irule inc_pc_invariant >> rw [next_instr_update, update_invariant] >>
metis_tac [terminator_def])
>- (
irule inc_pc_invariant >> rw [next_instr_update, update_invariant] >>
metis_tac [terminator_def])
>- ( (* Allocation *)
irule inc_pc_invariant >> rw [next_instr_update, update_invariant]
>- metis_tac [allocate_invariant]
>- (fs [next_instr_cases, allocate_cases] >> metis_tac [terminator_def]))
>- (
irule inc_pc_invariant >> rw [next_instr_update, update_invariant] >>
fs [next_instr_cases] >>
metis_tac [terminator_def])
>- ( (* Store *)
irule inc_pc_invariant >> rw [next_instr_update, update_invariant]
>- (irule set_bytes_invariant >> rw [] >> metis_tac [])
>- (fs [next_instr_cases] >> metis_tac [terminator_def]))
>- (
irule inc_pc_invariant >> rw [next_instr_update, update_invariant] >>
metis_tac [terminator_def])
>- (
irule inc_pc_invariant >> rw [next_instr_update, update_invariant] >>
metis_tac [terminator_def])
>- (
irule inc_pc_invariant >> rw [next_instr_update, update_invariant] >>
metis_tac [terminator_def])
>- (
irule inc_pc_invariant >> rw [next_instr_update, update_invariant] >>
metis_tac [terminator_def])
>- ( (* Call *)
rw [state_invariant_def]
>- (fs [prog_ok_def, ip_ok_def] >> metis_tac [NOT_NIL_EQ_LENGTH_NOT_0])
>- (fs [state_invariant_def, allocations_ok_def] >> metis_tac [])
>- (fs [state_invariant_def, heap_ok_def] >> metis_tac [])
>- (fs [state_invariant_def, globals_ok_def] >> metis_tac [])
>- (
fs [state_invariant_def, stack_ok_def] >> rw []
>- (
rw [frame_ok_def] >> fs [ip_ok_def, prog_ok_def] >>
last_x_assum drule >> disch_then drule >> rw [] >>
CCONTR_TAC >> fs [] >> rfs [LAST_EL] >>
Cases_on `length block'.body = s1.ip.i + 1` >> fs [PRE_SUB1] >>
fs [next_instr_cases] >>
metis_tac [terminator_def])
>- (fs [EVERY_MEM, frame_ok_def] >> metis_tac [])))
QED
(* ----- Initial state is ok ----- *)
Theorem init_invariant:
∀p s init. prog_ok p is_init_state s init state_invariant p s
Proof
rw [is_init_state_def, state_invariant_def]
>- (rw [ip_ok_def] >> fs [prog_ok_def] >> metis_tac [NOT_NIL_EQ_LENGTH_NOT_0])
>- rw [stack_ok_def]
QED
export_theory ();