Prove that Ret preserves the invariant

Summary:
Made progress on the sanity checking lemma (that the step relation
preserves some simple invariants on the state). Proved the Ret
instruction case of the state invariant lemma. To do this, I fixed a few
bugs in the definition, and strengthened the invariants.

Reviewed By: jberdine

Differential Revision: D16786900

fbshipit-source-id: 6fa8cb170
master
Scott Owens 6 years ago committed by Facebook Github Bot
parent df5f20956f
commit 89c3da4510

@ -239,7 +239,7 @@ Definition get_offset_def:
| None => None
| Some off => Some (i * sizeof t + off))
(get_offset (StrT ts) (i::is) =
if i < length ts then
if i < length ts then
case get_offset (el i ts) is of
| None => None
| Some off => Some (sum (map sizeof (take i ts)) + off)
@ -282,7 +282,7 @@ Definition eval_def:
(eval s (Variable v) =
case flookup s.locals v of
| None => <| poison := F; value := W1V 0w |>
| Some v => v)
| Some v => v)
(eval s (Constant c) = <| poison := F; value := eval_const s.globals c |>)
End
@ -308,14 +308,14 @@ Definition interval_to_set_def:
End
Definition interval_ok_def:
interval_ok (_, i1, i2)
interval_ok ((_:bool), i1, i2)
i1 i2 i2 < 2 ** 64
End
Definition is_allocated_def:
is_allocated b1 allocs
interval_ok b1
∃b2. b2 allocs interval_to_set b1 interval_to_set b2
∃b2. b2 allocs fst b1 = fst b2 interval_to_set b1 interval_to_set b2
End
Definition is_free_def:
@ -324,23 +324,29 @@ Definition is_free_def:
∀b2. b2 allocs interval_to_set b1 interval_to_set b2 =
End
Definition set_bytes_def:
(set_bytes p [] n h = h)
(set_bytes p (b::bs) n h =
set_bytes p bs (Suc n) (h |+ (A n, (p, b))))
End
(* Allocate a free chunk of memory, and write non-deterministic bytes into it *)
Inductive allocate:
(v2n v.value = Some m
v2n v.value = Some m
b = (T, w2n w, w2n w + m * len)
is_free b s.allocations
is_free b s.allocations
length bytes = m * len
allocate s v len
(<| poison := v.poison; value := PtrV w |>,
s with allocations := { b } s.allocations))
s with <| allocations := { b } s.allocations;
heap := set_bytes v.poison bytes (w2n w) s.heap |>)
End
Definition deallocate_def:
(deallocate (A n) (Some allocs) =
if ∃m. (T,n,m) allocs then
Some { (b,start,stop) | (b,start,stop) allocs start n }
else
None)
(deallocate _ None = None)
deallocate addrs allocs h =
let to_remove = { (T, n, stop) | A n set addrs (T, n, stop) allocs } in
(allocs DIFF to_remove, fdiff h (image A (bigunion (image interval_to_set to_remove))))
End
Definition get_bytes_def:
@ -406,12 +412,6 @@ Termination
decide_tac
End
Definition set_bytes_def:
(set_bytes p [] n h = h)
(set_bytes p (b::bs) n h =
set_bytes p bs (Suc n) (h |+ (A n, (p, b))))
End
Definition do_sub_def:
do_sub (nuw:bool) (nsw:bool) (v1:pv) (v2:pv) =
let (diff, u_overflow, s_overflow) =
@ -439,7 +439,7 @@ Definition do_icmp_def:
| (W1V w1, W1V w2) => (get_comp c) w1 w2
| (W8V w1, W8V w2) => (get_comp c) w1 w2
| (W32V w1, W32V w2) => (get_comp c) w1 w2
| (W64V w1, W64V w2) => (get_comp c) w1 w2
| (W64V w1, W64V w2) => (get_comp c) w1 w2
| (PtrV w1, PtrV w2) => (get_comp c) w1 w2) |>
End
@ -476,16 +476,17 @@ End
Inductive step_instr:
(s.stack = fr::st
FOLDR deallocate (Some s.allocations) fr.stack_allocs = Some new_allocs
deallocate fr.stack_allocs s.allocations s.heap = (new_allocs, new_h)
step_instr prog s
(Ret (t, a))
(update_result fr.result_var (eval s a)
<| ip := fr.ret;
globals := s.globals;
locals := fr.saved_locals;
stack := st;
allocations := new_allocs;
heap := heap |>))
heap := new_h |>))
(* Do the phi assignments in parallel. The manual says "For the purposes of the
* SSA form, the use of each incoming value is deemed to occur on the edge from
@ -500,7 +501,7 @@ Inductive step_instr:
*)
(eval s a = <| poison := p; value := W1V tf |>
l = Some (if tf = 1w then l1 else l2)
flookup prog s.ip.f = Some d
flookup prog s.ip.f = Some d
flookup d.blocks l = Some <| h := Head phis None; body := b |>
map (do_phi l s) phis = map Some updates
@ -542,7 +543,7 @@ Inductive step_instr:
(inc_pc (update_result r v2 s2)))
(eval s a1 = <| poison := p1; value := PtrV w |>
interval = (b, w2n w, w2n w + sizeof t)
interval = (freeable, w2n w, w2n w + sizeof t)
is_allocated interval s.allocations
pbytes = get_bytes s.heap interval
@ -553,7 +554,7 @@ Inductive step_instr:
s)))
(eval s a2 = <| poison := p2; value := PtrV w |>
interval = (b, w2n w, w2n w + sizeof t)
interval = (freeable, w2n w, w2n w + sizeof t)
is_allocated interval s.allocations
bytes = value_to_bytes (eval s a1).value
length bytes = sizeof t
@ -562,7 +563,7 @@ Inductive step_instr:
(Store (t1, a1) (t2, a2))
(inc_pc (s with heap := set_bytes p2 bytes (w2n w) s.heap)))
(map (eval s o snd) tindices = i1::indices
(map (eval s o snd) tindices = i1::indices
(eval s a1).value = PtrV w1
cast_num i1.value = Some n
map (λx. cast_num x.value) indices = map Some ns
@ -594,7 +595,7 @@ Inductive step_instr:
(Icmp c t a1 a2)
(inc_pc (update_result r (do_icmp c (eval s a1) (eval s a2)) s)))
(flookup prog fname = Some d
(flookup prog fname = Some d
step_instr prog s
(Call r t fname targs)
@ -620,8 +621,8 @@ Inductive step_instr:
End
Inductive next_instr:
flookup p s.ip.f = Some d
flookup d.blocks s.ip.b = Some b
flookup p s.ip.f = Some d
flookup d.blocks s.ip.b = Some b
s.ip.i < length b.body
next_instr p s (el s.ip.i b.body)
@ -642,13 +643,12 @@ Definition allocations_ok_def:
i1 s.allocations i2 s.allocations
interval_ok i1 interval_ok i2
(interval_to_set i1 interval_to_set i2
interval_to_set i1 = interval_to_set i2)
(interval_to_set i1 interval_to_set i2 i1 = i2)
End
Definition heap_ok_def:
heap_ok s
i n. i s.allocations n interval_to_set i flookup s.heap (A n) None
n. flookup s.heap (A n) None ∃i. i s.allocations n interval_to_set i
End
Definition globals_ok_def:
@ -675,7 +675,7 @@ Definition is_init_state_def:
flookup s.globals g = Some (n, w) flookup global_init g = Some (t,v)
∃bytes.
get_bytes s.heap (F, w2n w, w2n w + sizeof t) = map (λb. (F,b)) bytes
bytes_to_value t bytes = (v, [])
bytes_to_value t bytes = (v, [])
End
(* ----- Invariants on state ----- *)
@ -698,11 +698,12 @@ Definition frame_ok_def:
frame_ok p s f
ip_ok p f.ret
every (λn. ∃start stop. n = A start (T, start, stop) s.allocations) f.stack_allocs
End
End
Definition stack_ok_def:
stack_ok p s
every (frame_ok p s) s.stack
every (frame_ok p s) s.stack
all_distinct (flat (map (λf. f.stack_allocs) s.stack))
End
Definition state_invariant_def:

@ -9,6 +9,7 @@
open HolKernel boolLib bossLib Parse;
open pairTheory listTheory rich_listTheory arithmeticTheory wordsTheory;
open pred_setTheory finite_mapTheory;
open logrootTheory numposrepTheory;
open settingsTheory llvmTheory;
@ -76,13 +77,21 @@ Proof
Induct >> rw [] >> Cases_on `l2` >> fs []
QED
Theorem flookup_fdiff:
∀m s k.
flookup (fdiff m s) k =
if k s then None else flookup m k
Proof
rw [FDIFF_def, FLOOKUP_DRESTRICT] >> fs []
QED
(* ----- Theorems about log ----- *)
(* Could be upstreamed to HOL *)
Theorem mul_div_bound:
∀m n. n 0 m - (n - 1) n * (m DIV n) n * (m DIV n) m
Proof
rw [] >>
rw [] >>
`0 < n` by decide_tac >>
drule DIVISION >> disch_then (qspec_then `m` mp_tac) >>
decide_tac
@ -194,7 +203,7 @@ Theorem b2v_size:
∃vs. read_str ts bs = (vs, drop (sum (map sizeof ts)) bs))
Proof
ho_match_mp_tac bytes_to_value_ind >>
rw [sizeof_def, bytes_to_value_def, le_read_w_def] >>
rw [sizeof_def, bytes_to_value_def, le_read_w_def] >>
fs [first_class_type_def]
>- (simp [PAIR_MAP] >> metis_tac [SND])
>- (
@ -220,22 +229,22 @@ Theorem b2v_append:
∃vs. read_str ts (bs ++ bs') = (I ## (λx. x ++ bs')) (read_str ts bs))
Proof
ho_match_mp_tac bytes_to_value_ind >>
rw [sizeof_def, bytes_to_value_def, le_read_w_def] >>
rw [sizeof_def, bytes_to_value_def, le_read_w_def] >>
fs [first_class_type_def, TAKE_APPEND, DROP_APPEND,
DECIDE ``!x y. x y x - y = 0n``, ETA_THM]
>- (simp [PAIR_MAP] >> metis_tac [SND])
>- (simp [PAIR_MAP] >> metis_tac [SND])
>- (
rpt (pairarg_tac >> simp []) >> fs [ADD1] >>
rpt (pairarg_tac >> simp []) >> fs [ADD1] >>
BasicProvers.VAR_EQ_TAC >> fs [LEFT_ADD_DISTRIB] >>
first_x_assum irule >>
`sizeof t length bs` by decide_tac >>
`sizeof t length bs` by decide_tac >>
imp_res_tac b2v_smaller >> rfs [])
>- (
rpt (pairarg_tac >> simp []) >> fs [ADD1] >>
rpt (pairarg_tac >> simp []) >> fs [ADD1] >>
BasicProvers.VAR_EQ_TAC >> fs [LEFT_ADD_DISTRIB] >>
first_x_assum irule >>
`sizeof t length bs` by decide_tac >>
`sizeof t length bs` by decide_tac >>
imp_res_tac b2v_smaller >> rfs [])
QED
@ -323,7 +332,7 @@ Proof
simp [TAKE_TAKE_MIN] >>
`length l = n` by simp [Abbr `l`] >>
`length (dropWhile ($= 0) (reverse l)) n`
by metis_tac [LESS_EQ_TRANS, LENGTH_dropWhile_LESS_EQ, LENGTH_REVERSE] >>
by metis_tac [LESS_EQ_TRANS, LENGTH_dropWhile_LESS_EQ, LENGTH_REVERSE] >>
rw [MIN_DEF] >> fs []
>- (
simp [TAKE_APPEND, TAKE_TAKE_MIN, MIN_DEF, take_replicate] >>
@ -345,7 +354,7 @@ Proof
REWRITE_TAC [GSYM w2n_11, word_0_n2w] >>
simp [])
>- rw [TAKE_APPEND, TAKE_TAKE]
QED
QED
Theorem b2v_v2b:
∀v t bs. value_type t v bytes_to_value t (value_to_bytes v ++ bs) = (v, bs)
@ -427,7 +436,7 @@ Theorem extract_insertvalue:
insert_value v1 v2 indices = Some v3
extract_value v3 indices = Some v2
Proof
Proof
recInduct insert_value_ind >> rw [insert_value_def, extract_value_def] >>
pop_assum mp_tac >> CASE_TAC >> fs [] >> rfs [] >>
rw [] >> simp [extract_value_def, EL_LUPDATE]
@ -439,7 +448,7 @@ Theorem extract_insertvalue_other:
¬(indices1 indices2) ¬(indices2 indices1)
extract_value v3 indices2 = extract_value v1 indices2
Proof
Proof
recInduct insert_value_ind >> rw [insert_value_def, extract_value_def] >>
qpat_x_assum `_ = SOME _` mp_tac >> CASE_TAC >> rw [] >> rfs [] >>
qpat_x_assum `¬case _ of [] => F | h::t => P h t` mp_tac >>
@ -452,7 +461,7 @@ Theorem insert_extractvalue:
extract_value v1 indices = Some v2
insert_value v1 v2 indices = Some v1
Proof
Proof
recInduct extract_value_ind >> rw [insert_value_def, extract_value_def] >> fs [] >>
rw [LUPDATE_SAME]
QED
@ -476,7 +485,7 @@ Definition extract_type_def:
(extract_type (StrT ts) (i::idx) =
if i < length ts then
extract_type (el i ts) idx
else
else
None)
(extract_type _ _ = None)
End
@ -621,11 +630,87 @@ Proof
globals_ok_def, stack_ok_def, heap_ok_def, EVERY_EL, frame_ok_def]
QED
Theorem flookup_set_bytes:
∀poison bytes n h n'.
flookup (set_bytes poison bytes n h) (A n') =
if n n' n' < n + length bytes then
Some (poison, el (n' - n) bytes)
else
flookup h (A n')
Proof
Induct_on `bytes` >> rw [set_bytes_def, EL_CONS, PRE_SUB1] >>
fs [ADD1, FLOOKUP_UPDATE] >>
`n = n'` by decide_tac >>
rw []
QED
Theorem allocate_invariant:
∀p s1 v1 t v2 s2.
state_invariant p s1 allocate s1 v1 t (v2,s2) state_invariant p s2
Proof
rw [allocate_cases, state_invariant_def, ip_ok_def, heap_ok_def,
globals_ok_def, stack_ok_def] >>
rw [] >> fs []
>- (
fs [allocations_ok_def] >> rpt gen_tac >> disch_tac >> fs [is_free_def] >> rw [] >>
metis_tac [INTER_COMM])
>- (
rw [flookup_set_bytes]
>- rw [RIGHT_AND_OVER_OR, EXISTS_OR_THM, interval_to_set_def] >>
eq_tac >> rw [] >> fs [interval_to_set_def] >>
metis_tac [])
>- (fs [is_allocated_def] >> metis_tac [])
>- (fs [EVERY_EL, frame_ok_def] >> rw [] >> metis_tac [])
QED
Theorem set_bytes_invariant:
∀s poison bytes n prog b.
state_invariant prog s is_allocated (b, n, n + length bytes) s.allocations
state_invariant prog (s with heap := set_bytes poison bytes n s.heap)
Proof
rw [state_invariant_def]
>- (fs [allocations_ok_def] >> rw [] >> metis_tac [])
>- (
fs [heap_ok_def, flookup_set_bytes] >> rw [] >>
fs [is_allocated_def, interval_to_set_def, SUBSET_DEF] >>
metis_tac [LESS_EQ_REFL, DECIDE ``!x y. x < x + SUC y``])
>- (fs [globals_ok_def] >> metis_tac [])
>- (fs [stack_ok_def, EVERY_EL, frame_ok_def])
QED
Theorem step_instr_invariant:
∀i s2. step_instr p s1 i s2 prog_ok p next_instr p s1 i state_invariant p s1 state_invariant p s2
∀i s2.
step_instr p s1 i s2 prog_ok p next_instr p s1 i state_invariant p s1
state_invariant p s2
Proof
ho_match_mp_tac step_instr_ind >> rw []
>- cheat
>- (
rw [update_invariant] >> fs [state_invariant_def] >> rw []
>- (
fs [stack_ok_def] >> rfs [EVERY_EL, frame_ok_def] >>
first_x_assum (qspec_then `0` mp_tac) >> simp [])
>- (fs [deallocate_def, allocations_ok_def] >> rw [] >> metis_tac [])
>- (
fs [deallocate_def, heap_ok_def] >> rw [flookup_fdiff] >>
eq_tac >> rw []
>- metis_tac [optionTheory.NOT_IS_SOME_EQ_NONE]
>- metis_tac [optionTheory.NOT_IS_SOME_EQ_NONE] >>
fs [allocations_ok_def, stack_ok_def, EXTENSION] >> metis_tac [])
>- (
fs [globals_ok_def, deallocate_def] >> rw [] >>
first_x_assum drule >> rw [] >> fs [is_allocated_def] >>
qexists_tac `b2` >> rw [] >> CCONTR_TAC >> fs [])
>- (
fs [stack_ok_def, EVERY_MEM, frame_ok_def, deallocate_def] >> rfs [] >>
rw []
>- (
res_tac >> rw [] >> qexists_tac `stop` >> rw [] >>
fs [ALL_DISTINCT_APPEND, MEM_FLAT, MEM_MAP] >>
metis_tac [])
>- (
fs [ALL_DISTINCT_APPEND])))
>- cheat
>- cheat
>- (
@ -640,7 +725,7 @@ Proof
>- (
(* Allocation *)
irule inc_pc_invariant >> rw [next_instr_update, update_invariant]
>- cheat
>- metis_tac [allocate_invariant]
>- (fs [next_instr_cases, allocate_cases] >> metis_tac [terminator_def]))
>- (
irule inc_pc_invariant >> rw [next_instr_update, update_invariant] >>
@ -649,7 +734,7 @@ Proof
>- (
(* Store *)
irule inc_pc_invariant >> rw [next_instr_update, update_invariant]
>- cheat
>- (irule set_bytes_invariant >> rw [] >> metis_tac [])
>- (fs [next_instr_cases] >> metis_tac [terminator_def]))
>- (
irule inc_pc_invariant >> rw [next_instr_update, update_invariant] >>

@ -29,6 +29,7 @@ overload_on ("el", ``EL``);
overload_on ("count_list", ``COUNT_LIST``);
overload_on ("Suc", ``SUC``);
overload_on ("flat", ``FLAT``);
overload_on ("all_distinct", ``ALL_DISTINCT``);
overload_on ("take", ``TAKE``);
overload_on ("drop", ``DROP``);
overload_on ("replicate", ``REPLICATE``);
@ -42,5 +43,10 @@ overload_on ("option_join", ``OPTION_JOIN``);
overload_on ("min", ``MIN``);
overload_on ("list_update", ``LUPDATE``);
overload_on ("last", ``LAST``);
overload_on ("fdiff", ``FDIFF``);
overload_on ("image", ``IMAGE``);
overload_on ("bigunion", ``BIGUNION``);
overload_on ("finite", ``FINITE``);
overload_on ("card", ``CARD``);
export_theory ();

Loading…
Cancel
Save