|
|
|
|
(*
|
|
|
|
|
* Copyright (c) Facebook, Inc. and its affiliates.
|
|
|
|
|
*
|
|
|
|
|
* This source code is licensed under the MIT license found in the
|
|
|
|
|
* LICENSE file in the root directory of this source tree.
|
|
|
|
|
*)
|
|
|
|
|
|
|
|
|
|
(* Define SSA form and the concept of variable liveness, and then show how SSA
|
|
|
|
|
* simplifies it *)
|
|
|
|
|
|
|
|
|
|
open HolKernel boolLib bossLib Parse;
|
|
|
|
|
open pred_setTheory listTheory rich_listTheory;
|
|
|
|
|
open settingsTheory miscTheory llvmTheory llvm_propTheory;
|
|
|
|
|
|
|
|
|
|
new_theory "llvm_ssa";
|
|
|
|
|
|
|
|
|
|
numLib.prefer_num ();
|
|
|
|
|
|
|
|
|
|
(* ----- Static paths through a program *)
|
|
|
|
|
|
|
|
|
|
Definition inc_pc_def:
|
|
|
|
|
inc_pc ip = ip with i := inc_bip ip.i
|
|
|
|
|
End
|
|
|
|
|
|
|
|
|
|
(* The set of program counters the given instruction and starting point can
|
|
|
|
|
* immediately reach, within a function *)
|
|
|
|
|
Definition instr_next_ips_def:
|
|
|
|
|
(instr_next_ips (Ret _) ip = {}) ∧
|
|
|
|
|
(instr_next_ips (Br _ l1 l2) ip =
|
|
|
|
|
{ <| f := ip.f; b := Some l; i := Phi_ip ip.b |> | l | l ∈ {l1; l2} }) ∧
|
|
|
|
|
(instr_next_ips (Invoke _ _ _ _ l1 l2) ip =
|
|
|
|
|
{ <| f := ip.f; b := Some l; i := Phi_ip ip.b |> | l | l ∈ {l1; l2} }) ∧
|
|
|
|
|
(instr_next_ips Unreachable ip = {}) ∧
|
|
|
|
|
(instr_next_ips Exit ip = {}) ∧
|
|
|
|
|
(instr_next_ips (Sub _ _ _ _ _ _) ip = { inc_pc ip }) ∧
|
|
|
|
|
(instr_next_ips (Extractvalue _ _ _) ip = { inc_pc ip }) ∧
|
|
|
|
|
(instr_next_ips (Insertvalue _ _ _ _) ip = { inc_pc ip }) ∧
|
|
|
|
|
(instr_next_ips (Alloca _ _ _) ip = { inc_pc ip }) ∧
|
|
|
|
|
(instr_next_ips (Load _ _ _) ip = { inc_pc ip }) ∧
|
|
|
|
|
(instr_next_ips (Store _ _) ip = { inc_pc ip }) ∧
|
|
|
|
|
(instr_next_ips (Gep _ _ _ _) ip = { inc_pc ip }) ∧
|
|
|
|
|
(instr_next_ips (Ptrtoint _ _ _) ip = { inc_pc ip }) ∧
|
|
|
|
|
(instr_next_ips (Inttoptr _ _ _) ip = { inc_pc ip }) ∧
|
|
|
|
|
(instr_next_ips (Icmp _ _ _ _ _) ip = { inc_pc ip }) ∧
|
|
|
|
|
(instr_next_ips (Call _ _ _ _) ip = { inc_pc ip }) ∧
|
|
|
|
|
(instr_next_ips (Cxa_allocate_exn _ _) ip = { inc_pc ip }) ∧
|
|
|
|
|
(* TODO: revisit throw when dealing with exceptions *)
|
|
|
|
|
(instr_next_ips (Cxa_throw _ _ _) ip = { }) ∧
|
|
|
|
|
(instr_next_ips (Cxa_begin_catch _ _) ip = { inc_pc ip }) ∧
|
|
|
|
|
(instr_next_ips (Cxa_end_catch) ip = { inc_pc ip }) ∧
|
|
|
|
|
(instr_next_ips (Cxa_get_exception_ptr _ _) ip = { inc_pc ip })
|
|
|
|
|
End
|
|
|
|
|
|
|
|
|
|
Inductive next_ips:
|
|
|
|
|
(∀prog ip i l.
|
|
|
|
|
get_instr prog ip (Inl i) ∧
|
|
|
|
|
l ∈ instr_next_ips i ip
|
|
|
|
|
⇒
|
|
|
|
|
next_ips prog ip l) ∧
|
|
|
|
|
(∀prog ip from_l phis.
|
|
|
|
|
get_instr prog ip (Inr (from_l, phis))
|
|
|
|
|
⇒
|
|
|
|
|
next_ips prog ip (inc_pc ip))
|
|
|
|
|
End
|
|
|
|
|
|
|
|
|
|
(* The path is a list of program counters that represent a statically feasible
|
|
|
|
|
* path through a function *)
|
|
|
|
|
Inductive good_path:
|
|
|
|
|
(∀prog. good_path prog []) ∧
|
|
|
|
|
|
|
|
|
|
(∀prog ip i.
|
|
|
|
|
get_instr prog ip i
|
|
|
|
|
⇒
|
|
|
|
|
good_path prog [ip]) ∧
|
|
|
|
|
|
|
|
|
|
(∀prog path ip1 ip2.
|
|
|
|
|
ip2 ∈ next_ips prog ip1 ∧
|
|
|
|
|
good_path prog (ip2::path)
|
|
|
|
|
⇒
|
|
|
|
|
good_path prog (ip1::ip2::path))
|
|
|
|
|
End
|
|
|
|
|
|
|
|
|
|
Theorem next_ips_same_func:
|
|
|
|
|
∀prog ip1 ip2. ip2 ∈ next_ips prog ip1 ⇒ ip1.f = ip2.f
|
|
|
|
|
Proof
|
|
|
|
|
rw [next_ips_cases, IN_DEF, get_instr_cases, inc_pc_def, inc_bip_def] >> rw [] >>
|
|
|
|
|
Cases_on `el idx b.body` >> fs [instr_next_ips_def, inc_pc_def, inc_bip_def]
|
|
|
|
|
QED
|
|
|
|
|
|
|
|
|
|
Theorem good_path_same_func:
|
|
|
|
|
∀prog path. good_path prog path ⇒ ∀ip1 ip2. mem ip1 path ∧ mem ip2 path ⇒ ip1.f = ip2.f
|
|
|
|
|
Proof
|
|
|
|
|
ho_match_mp_tac good_path_ind >> rw [] >>
|
|
|
|
|
metis_tac [next_ips_same_func]
|
|
|
|
|
QED
|
|
|
|
|
|
|
|
|
|
Theorem good_path_prefix:
|
|
|
|
|
∀prog path path'. good_path prog path ∧ path' ≼ path ⇒ good_path prog path'
|
|
|
|
|
Proof
|
|
|
|
|
Induct_on `path'` >> rw []
|
|
|
|
|
>- simp [Once good_path_cases] >>
|
|
|
|
|
pop_assum mp_tac >> CASE_TAC >> rw [] >>
|
|
|
|
|
qpat_x_assum `good_path _ _` mp_tac >>
|
|
|
|
|
simp [Once good_path_cases] >> rw [] >> fs []
|
|
|
|
|
>- (simp [Once good_path_cases] >> metis_tac []) >>
|
|
|
|
|
first_x_assum drule >> rw [] >>
|
|
|
|
|
simp [Once good_path_cases] >>
|
|
|
|
|
Cases_on `path'` >> fs [next_ips_cases, IN_DEF] >>
|
|
|
|
|
metis_tac []
|
|
|
|
|
QED
|
|
|
|
|
|
|
|
|
|
(* ----- Helper functions to get registers out of instructions ----- *)
|
|
|
|
|
|
|
|
|
|
Definition arg_to_regs_def:
|
|
|
|
|
(arg_to_regs (Constant _) = {}) ∧
|
|
|
|
|
(arg_to_regs (Variable r) = {r})
|
|
|
|
|
End
|
|
|
|
|
|
|
|
|
|
(* The registers that an instruction uses *)
|
|
|
|
|
Definition instr_uses_def:
|
|
|
|
|
(instr_uses (Ret (_, a)) = arg_to_regs a) ∧
|
|
|
|
|
(instr_uses (Br a _ _) = arg_to_regs a) ∧
|
|
|
|
|
(instr_uses (Invoke _ _ a targs _ _) =
|
|
|
|
|
arg_to_regs a ∪ BIGUNION (set (map (arg_to_regs o snd) targs))) ∧
|
|
|
|
|
(instr_uses Unreachable = {}) ∧
|
|
|
|
|
(instr_uses (Sub _ _ _ _ a1 a2) =
|
|
|
|
|
arg_to_regs a1 ∪ arg_to_regs a2) ∧
|
|
|
|
|
(instr_uses (Extractvalue _ (_, a) _) = arg_to_regs a) ∧
|
|
|
|
|
(instr_uses (Insertvalue _ (_, a1) (_, a2) _) =
|
|
|
|
|
arg_to_regs a1 ∪ arg_to_regs a2) ∧
|
|
|
|
|
(instr_uses (Alloca _ _ (_, a)) = arg_to_regs a) ∧
|
|
|
|
|
(instr_uses (Load _ _ (_, a)) = arg_to_regs a) ∧
|
|
|
|
|
(instr_uses (Store (_, a1) (_, a2)) =
|
|
|
|
|
arg_to_regs a1 ∪ arg_to_regs a2) ∧
|
|
|
|
|
(instr_uses (Gep _ _ (_, a) targs) =
|
|
|
|
|
arg_to_regs a ∪ BIGUNION (set (map (arg_to_regs o snd) targs))) ∧
|
|
|
|
|
(instr_uses (Ptrtoint _ (_, a) _) = arg_to_regs a) ∧
|
|
|
|
|
(instr_uses (Inttoptr _ (_, a) _) = arg_to_regs a) ∧
|
|
|
|
|
(instr_uses (Icmp _ _ _ a1 a2) =
|
|
|
|
|
arg_to_regs a1 ∪ arg_to_regs a2) ∧
|
|
|
|
|
(instr_uses (Call _ _ _ targs) =
|
|
|
|
|
BIGUNION (set (map (arg_to_regs o snd) targs))) ∧
|
|
|
|
|
(instr_uses (Cxa_allocate_exn _ a) = arg_to_regs a) ∧
|
|
|
|
|
(instr_uses (Cxa_throw a1 a2 a3) =
|
|
|
|
|
arg_to_regs a1 ∪ arg_to_regs a2 ∪ arg_to_regs a3) ∧
|
|
|
|
|
(instr_uses (Cxa_begin_catch _ a) = arg_to_regs a) ∧
|
|
|
|
|
(instr_uses (Cxa_end_catch) = { }) ∧
|
|
|
|
|
(instr_uses (Cxa_get_exception_ptr _ a) = arg_to_regs a)
|
|
|
|
|
End
|
|
|
|
|
|
|
|
|
|
Definition phi_uses_def:
|
|
|
|
|
phi_uses from_l (Phi _ _ entries) =
|
|
|
|
|
case alookup entries from_l of
|
|
|
|
|
| None => {}
|
|
|
|
|
| Some a => arg_to_regs a
|
|
|
|
|
End
|
|
|
|
|
|
|
|
|
|
Inductive uses:
|
|
|
|
|
(∀prog ip i r.
|
|
|
|
|
get_instr prog ip (Inl i) ∧
|
|
|
|
|
r ∈ instr_uses i
|
|
|
|
|
⇒
|
|
|
|
|
uses prog ip r) ∧
|
|
|
|
|
(∀prog ip from_l phis r.
|
|
|
|
|
get_instr prog ip (Inr (from_l, phis)) ∧
|
|
|
|
|
r ∈ BIGUNION (set (map (phi_uses from_l) phis))
|
|
|
|
|
⇒
|
|
|
|
|
uses prog ip r)
|
|
|
|
|
End
|
|
|
|
|
|
|
|
|
|
(* The registers that an instruction assigns *)
|
|
|
|
|
Definition instr_assigns_def:
|
|
|
|
|
(instr_assigns (Invoke r _ _ _ _ _) = {r}) ∧
|
|
|
|
|
(instr_assigns (Sub r _ _ _ _ _) = {r}) ∧
|
|
|
|
|
(instr_assigns (Extractvalue r _ _) = {r}) ∧
|
|
|
|
|
(instr_assigns (Insertvalue r _ _ _) = {r}) ∧
|
|
|
|
|
(instr_assigns (Alloca r _ _) = {r}) ∧
|
|
|
|
|
(instr_assigns (Load r _ _) = {r}) ∧
|
|
|
|
|
(instr_assigns (Gep r _ _ _) = {r}) ∧
|
|
|
|
|
(instr_assigns (Ptrtoint r _ _) = {r}) ∧
|
|
|
|
|
(instr_assigns (Inttoptr r _ _) = {r}) ∧
|
|
|
|
|
(instr_assigns (Icmp r _ _ _ _) = {r}) ∧
|
|
|
|
|
(instr_assigns (Call r _ _ _) = {r}) ∧
|
|
|
|
|
(instr_assigns (Cxa_allocate_exn r _) = {r}) ∧
|
|
|
|
|
(instr_assigns (Cxa_begin_catch r _) = {r}) ∧
|
|
|
|
|
(instr_assigns (Cxa_get_exception_ptr r _) = {r}) ∧
|
|
|
|
|
(instr_assigns _ = {})
|
|
|
|
|
End
|
|
|
|
|
|
|
|
|
|
Definition phi_assigns_def:
|
|
|
|
|
phi_assigns (Phi r _ _) = {r}
|
|
|
|
|
End
|
|
|
|
|
|
|
|
|
|
Inductive assigns:
|
|
|
|
|
(∀prog ip i r.
|
|
|
|
|
get_instr prog ip (Inl i) ∧
|
|
|
|
|
r ∈ instr_assigns i
|
|
|
|
|
⇒
|
|
|
|
|
assigns prog ip r) ∧
|
|
|
|
|
(∀prog ip from_l phis r.
|
|
|
|
|
get_instr prog ip (Inr (from_l, phis)) ∧
|
|
|
|
|
r ∈ BIGUNION (set (map phi_assigns phis))
|
|
|
|
|
⇒
|
|
|
|
|
assigns prog ip r)
|
|
|
|
|
End
|
|
|
|
|
|
|
|
|
|
(* ----- SSA form ----- *)
|
|
|
|
|
|
|
|
|
|
Definition entry_ip_def:
|
|
|
|
|
entry_ip fname = <| f := fname; b := None; i := Offset 0 |>
|
|
|
|
|
End
|
|
|
|
|
|
|
|
|
|
Definition reachable_def:
|
|
|
|
|
reachable prog ip ⇔
|
|
|
|
|
∃path. good_path prog (entry_ip ip.f :: path) ∧ last (entry_ip ip.f :: path) = ip
|
|
|
|
|
End
|
|
|
|
|
|
|
|
|
|
(* To get to ip2 from the entry, you must go through ip1 *)
|
|
|
|
|
Definition dominates_def:
|
|
|
|
|
dominates prog ip1 ip2 ⇔
|
|
|
|
|
∀path.
|
|
|
|
|
good_path prog (entry_ip ip2.f :: path) ∧
|
|
|
|
|
last (entry_ip ip2.f :: path) = ip2 ⇒
|
|
|
|
|
mem ip1 (front (entry_ip ip2.f :: path))
|
|
|
|
|
End
|
|
|
|
|
|
|
|
|
|
Definition is_ssa_def:
|
|
|
|
|
is_ssa prog ⇔
|
|
|
|
|
(* Operate function by function *)
|
|
|
|
|
(∀fname.
|
|
|
|
|
(* No register is assigned in two different instructions *)
|
|
|
|
|
(∀r ip1 ip2.
|
|
|
|
|
r ∈ assigns prog ip1 ∧ r ∈ assigns prog ip2 ∧ ip1.f = fname ∧ ip2.f = fname
|
|
|
|
|
⇒
|
|
|
|
|
ip1 = ip2)) ∧
|
|
|
|
|
(* Each use is dominated by its assignment *)
|
|
|
|
|
(∀ip1 r. r ∈ uses prog ip1 ⇒ ∃ip2. r ∈ assigns prog ip2 ∧ dominates prog ip2 ip1)
|
|
|
|
|
End
|
|
|
|
|
|
|
|
|
|
Theorem dominates_trans:
|
|
|
|
|
∀prog ip1 ip2 ip3.
|
|
|
|
|
dominates prog ip1 ip2 ∧ dominates prog ip2 ip3 ⇒ dominates prog ip1 ip3
|
|
|
|
|
Proof
|
|
|
|
|
rw [dominates_def] >> simp [FRONT_DEF] >> rw []
|
|
|
|
|
>- (first_x_assum (qspec_then `[]` mp_tac) >> rw []) >>
|
|
|
|
|
first_x_assum drule >> rw [] >>
|
|
|
|
|
qpat_x_assum `mem _ (front _)` mp_tac >>
|
|
|
|
|
simp [Once MEM_EL] >> rw [] >> fs [EL_FRONT] >>
|
|
|
|
|
first_x_assum (qspec_then `take n path` mp_tac) >> simp [LAST_DEF] >>
|
|
|
|
|
rw [] >> fs [entry_ip_def]
|
|
|
|
|
>- (fs [Once good_path_cases] >> rw [] >> fs [next_ips_cases, IN_DEF]) >>
|
|
|
|
|
rfs [EL_CONS] >>
|
|
|
|
|
`?m. n = Suc m` by (Cases_on `n` >> rw []) >>
|
|
|
|
|
rw [] >> rfs [] >>
|
|
|
|
|
`(el m path).f = ip3.f`
|
|
|
|
|
by (
|
|
|
|
|
irule good_path_same_func >>
|
|
|
|
|
qexists_tac `<| f:= ip3.f; b := NONE; i := Offset 0|> :: path` >>
|
|
|
|
|
qexists_tac `prog` >>
|
|
|
|
|
conj_tac >- rw [EL_MEM] >>
|
|
|
|
|
metis_tac [MEM_LAST]) >>
|
|
|
|
|
fs [] >> qpat_x_assum `_ ⇒ _` mp_tac >> impl_tac
|
|
|
|
|
>- (
|
|
|
|
|
irule good_path_prefix >> HINT_EXISTS_TAC >> rw [] >>
|
|
|
|
|
metis_tac [take_is_prefix]) >>
|
|
|
|
|
rw [] >> drule MEM_FRONT >> rw [] >>
|
|
|
|
|
fs [MEM_EL, LENGTH_FRONT] >> rfs [EL_TAKE] >> rw [] >>
|
|
|
|
|
disj2_tac >> qexists_tac `n'` >> rw [] >>
|
|
|
|
|
irule (GSYM EL_FRONT) >>
|
|
|
|
|
rw [NULL_EQ, LENGTH_FRONT]
|
|
|
|
|
QED
|
|
|
|
|
|
|
|
|
|
Theorem dominates_unreachable:
|
|
|
|
|
∀prog ip1 ip2. ¬reachable prog ip2 ⇒ dominates prog ip1 ip2
|
|
|
|
|
Proof
|
|
|
|
|
rw [dominates_def, reachable_def] >>
|
|
|
|
|
metis_tac []
|
|
|
|
|
QED
|
|
|
|
|
|
|
|
|
|
Theorem dominates_antisym_lem:
|
|
|
|
|
∀prog ip1 ip2. dominates prog ip1 ip2 ∧ dominates prog ip2 ip1 ⇒ ¬reachable prog ip1
|
|
|
|
|
Proof
|
|
|
|
|
rw [dominates_def, reachable_def] >> CCONTR_TAC >> fs [] >>
|
|
|
|
|
Cases_on `ip1 = entry_ip ip1.f` >> fs []
|
|
|
|
|
>- (
|
|
|
|
|
first_x_assum (qspec_then `[]` mp_tac) >> rw [] >>
|
|
|
|
|
fs [Once good_path_cases, IN_DEF, next_ips_cases] >>
|
|
|
|
|
metis_tac []) >>
|
|
|
|
|
`path ≠ []` by (Cases_on `path` >> fs []) >>
|
|
|
|
|
`(OLEAST n. n < length path ∧ el n path = ip1) ≠ None`
|
|
|
|
|
by (
|
|
|
|
|
rw [whileTheory.OLEAST_EQ_NONE] >>
|
|
|
|
|
qexists_tac `PRE (length path)` >> rw [] >>
|
|
|
|
|
fs [LAST_DEF, LAST_EL] >>
|
|
|
|
|
Cases_on `path` >> fs []) >>
|
|
|
|
|
qabbrev_tac `path1 = splitAtPki (\n ip. ip = ip1) (\x y. x) path` >>
|
|
|
|
|
first_x_assum (qspec_then `path1 ++ [ip1]` mp_tac) >>
|
|
|
|
|
simp [] >>
|
|
|
|
|
conj_asm1_tac >> rw []
|
|
|
|
|
>- (
|
|
|
|
|
irule good_path_prefix >>
|
|
|
|
|
HINT_EXISTS_TAC >> rw [] >>
|
|
|
|
|
unabbrev_all_tac >> rw [splitAtPki_EQN] >>
|
|
|
|
|
CASE_TAC >> rw [] >>
|
|
|
|
|
fs [whileTheory.OLEAST_EQ_SOME] >>
|
|
|
|
|
rw [GSYM SNOC_APPEND, SNOC_EL_TAKE] >>
|
|
|
|
|
metis_tac [take_is_prefix])
|
|
|
|
|
>- rw [LAST_DEF] >>
|
|
|
|
|
simp [GSYM SNOC_APPEND, FRONT_SNOC, FRONT_DEF] >>
|
|
|
|
|
CCONTR_TAC >> fs [MEM_EL]
|
|
|
|
|
>- (
|
|
|
|
|
first_x_assum (qspec_then `[]` mp_tac) >>
|
|
|
|
|
fs [entry_ip_def, Once good_path_cases, IN_DEF, next_ips_cases] >>
|
|
|
|
|
metis_tac []) >>
|
|
|
|
|
rw [] >>
|
|
|
|
|
rename [`n1 < length _`, `last _ = el n path`] >>
|
|
|
|
|
first_x_assum (qspec_then `take (Suc n1) path1` mp_tac) >> rw []
|
|
|
|
|
>- (
|
|
|
|
|
irule good_path_prefix >> HINT_EXISTS_TAC >> rw [entry_ip_def]
|
|
|
|
|
>- (
|
|
|
|
|
irule good_path_same_func >>
|
|
|
|
|
qexists_tac `entry_ip (el n path).f::(path1 ++ [el n path])` >>
|
|
|
|
|
qexists_tac `prog` >> rw [EL_MEM]) >>
|
|
|
|
|
metis_tac [IS_PREFIX_APPEND3, take_is_prefix, IS_PREFIX_TRANS])
|
|
|
|
|
>- (rw [LAST_DEF] >> fs []) >>
|
|
|
|
|
rw [METIS_PROVE [] ``~x ∨ y ⇔ (x ⇒ y)``] >>
|
|
|
|
|
simp [EL_FRONT] >>
|
|
|
|
|
rename [`n2 < Suc _`] >>
|
|
|
|
|
Cases_on `¬(0 < n2)` >> rw [EL_CONS]
|
|
|
|
|
>- (
|
|
|
|
|
fs [entry_ip_def] >>
|
|
|
|
|
`(el n path).f = (el n1 path1).f` suffices_by metis_tac [] >>
|
|
|
|
|
irule good_path_same_func >>
|
|
|
|
|
qexists_tac `<|f := (el n path).f; b := None; i := Offset 0|> ::(path1 ++ [el n path])` >>
|
|
|
|
|
qexists_tac `prog` >>
|
|
|
|
|
rw [EL_MEM]) >>
|
|
|
|
|
fs [EL_TAKE, Abbr `path1`, splitAtPki_EQN] >>
|
|
|
|
|
CASE_TAC >> rw [] >> fs []
|
|
|
|
|
>- metis_tac [] >>
|
|
|
|
|
fs [whileTheory.OLEAST_EQ_SOME] >>
|
|
|
|
|
rfs [LENGTH_TAKE] >>
|
|
|
|
|
`PRE n2 < x` by decide_tac >>
|
|
|
|
|
first_x_assum drule >>
|
|
|
|
|
rw [EL_TAKE]
|
|
|
|
|
QED
|
|
|
|
|
|
|
|
|
|
Theorem dominates_antisym:
|
|
|
|
|
∀prog ip1 ip2. reachable prog ip1 ∧ dominates prog ip1 ip2 ⇒ ¬dominates prog ip2 ip1
|
|
|
|
|
Proof
|
|
|
|
|
metis_tac [dominates_antisym_lem]
|
|
|
|
|
QED
|
|
|
|
|
|
|
|
|
|
Theorem dominates_irrefl:
|
|
|
|
|
∀prog ip. reachable prog ip ⇒ ¬dominates prog ip ip
|
|
|
|
|
Proof
|
|
|
|
|
metis_tac [dominates_antisym]
|
|
|
|
|
QED
|
|
|
|
|
|
|
|
|
|
(* ----- Liveness ----- *)
|
|
|
|
|
|
|
|
|
|
Definition live_def:
|
|
|
|
|
live prog ip =
|
|
|
|
|
{ r | ∃path.
|
|
|
|
|
good_path prog (ip::path) ∧
|
|
|
|
|
r ∈ uses prog (last (ip::path)) ∧
|
|
|
|
|
∀ip2. ip2 ∈ set (front (ip::path)) ⇒ r ∉ assigns prog ip2 }
|
|
|
|
|
End
|
|
|
|
|
|
|
|
|
|
Theorem get_instr_live:
|
|
|
|
|
∀prog ip instr.
|
|
|
|
|
get_instr prog ip instr
|
|
|
|
|
⇒
|
|
|
|
|
uses prog ip ⊆ live prog ip
|
|
|
|
|
Proof
|
|
|
|
|
rw [live_def, SUBSET_DEF] >>
|
|
|
|
|
qexists_tac `[]` >> rw [Once good_path_cases] >>
|
|
|
|
|
qexists_tac `instr` >> simp [] >> metis_tac [IN_DEF]
|
|
|
|
|
QED
|
|
|
|
|
|
|
|
|
|
Triviality set_rw:
|
|
|
|
|
∀s P. (∀x. x ∈ s ⇔ P x) ⇔ s = P
|
|
|
|
|
Proof
|
|
|
|
|
rw [] >> eq_tac >> rw [IN_DEF] >> metis_tac []
|
|
|
|
|
QED
|
|
|
|
|
|
|
|
|
|
Theorem live_gen_kill:
|
|
|
|
|
∀prog ip ip'.
|
|
|
|
|
live prog ip =
|
|
|
|
|
BIGUNION {live prog ip' | ip' | ip' ∈ next_ips prog ip} DIFF assigns prog ip ∪ uses prog ip
|
|
|
|
|
Proof
|
|
|
|
|
rw [live_def, EXTENSION] >> eq_tac >> rw []
|
|
|
|
|
>- (
|
|
|
|
|
Cases_on `path` >> fs [] >>
|
|
|
|
|
rename1 `ip::ip2::path` >>
|
|
|
|
|
qpat_x_assum `good_path _ _` mp_tac >> simp [Once good_path_cases] >> rw [] >>
|
|
|
|
|
Cases_on `x ∈ uses prog ip` >> fs [] >> simp [set_rw, PULL_EXISTS] >>
|
|
|
|
|
qexists_tac `ip2` >> qexists_tac `path` >> rw [])
|
|
|
|
|
>- (
|
|
|
|
|
fs [] >>
|
|
|
|
|
qexists_tac `ip'::path` >> rw [] >>
|
|
|
|
|
simp [Once good_path_cases])
|
|
|
|
|
>- (
|
|
|
|
|
qexists_tac `[]` >> rw [] >>
|
|
|
|
|
fs [Once good_path_cases, uses_cases, IN_DEF] >>
|
|
|
|
|
metis_tac [])
|
|
|
|
|
QED
|
|
|
|
|
|
|
|
|
|
export_theory ();
|