|
|
|
|
(*
|
|
|
|
|
* Copyright (c) Facebook, Inc. and its affiliates.
|
|
|
|
|
*
|
|
|
|
|
* This source code is licensed under the MIT license found in the
|
|
|
|
|
* LICENSE file in the root directory of this source tree.
|
|
|
|
|
*)
|
|
|
|
|
|
|
|
|
|
(* Properties of the llair model *)
|
|
|
|
|
|
|
|
|
|
open HolKernel boolLib bossLib Parse;
|
|
|
|
|
open arithmeticTheory integerTheory integer_wordTheory wordsTheory listTheory;
|
|
|
|
|
open pred_setTheory finite_mapTheory;
|
|
|
|
|
open settingsTheory miscTheory llairTheory;
|
|
|
|
|
|
|
|
|
|
new_theory "llair_prop";
|
|
|
|
|
|
|
|
|
|
numLib.prefer_num ();
|
|
|
|
|
|
|
|
|
|
Theorem i2n_n2i:
|
|
|
|
|
!n size. 0 < size ⇒ (nfits n size ⇔ (i2n (n2i n size) = n))
|
|
|
|
|
Proof
|
|
|
|
|
rw [nfits_def, n2i_def, i2n_def] >> rw []
|
|
|
|
|
>- intLib.COOPER_TAC
|
|
|
|
|
>- (
|
|
|
|
|
`2 ** size ≤ n` by intLib.COOPER_TAC >> simp [INT_SUB] >>
|
|
|
|
|
Cases_on `n = 0` >> fs [] >>
|
|
|
|
|
`n - 2 ** size < n` suffices_by intLib.COOPER_TAC >>
|
|
|
|
|
irule SUB_LESS >> simp [])
|
|
|
|
|
>- (
|
|
|
|
|
`2 ** (size - 1) < 2 ** size` suffices_by intLib.COOPER_TAC >>
|
|
|
|
|
fs [])
|
|
|
|
|
QED
|
|
|
|
|
|
|
|
|
|
Theorem n2i_i2n:
|
|
|
|
|
!i size. 0 < size ⇒ (ifits i size ⇔ (n2i (i2n (IntV i size)) size) = IntV i size)
|
|
|
|
|
Proof
|
|
|
|
|
rw [ifits_def, n2i_def, i2n_def] >> rw [] >> fs []
|
|
|
|
|
>- (
|
|
|
|
|
eq_tac >> rw []
|
|
|
|
|
>- (
|
|
|
|
|
simp [intLib.COOPER_PROVE ``∀(x:int) y z. x - y = z ⇔ x = y + z``] >>
|
|
|
|
|
`2 ** (size - 1) < 2 ** size` suffices_by intLib.COOPER_TAC >>
|
|
|
|
|
fs [INT_OF_NUM])
|
|
|
|
|
>- (
|
|
|
|
|
fs [intLib.COOPER_PROVE ``∀(x:int) y z. x - y = z ⇔ x = y + z``] >>
|
|
|
|
|
fs [INT_OF_NUM] >>
|
|
|
|
|
`?j. i = -j` by intLib.COOPER_TAC >> rw [] >> fs [] >>
|
|
|
|
|
qpat_x_assum `_ ≤ Num _` mp_tac >>
|
|
|
|
|
fs [GSYM INT_OF_NUM] >>
|
|
|
|
|
ASM_REWRITE_TAC [GSYM INT_LE] >> rw [] >>
|
|
|
|
|
`2 ** size = 2 * 2 ** (size - 1)` by rw [GSYM EXP, ADD1] >> fs [] >>
|
|
|
|
|
intLib.COOPER_TAC)
|
|
|
|
|
>- intLib.COOPER_TAC)
|
|
|
|
|
>- (
|
|
|
|
|
eq_tac >> rw []
|
|
|
|
|
>- intLib.COOPER_TAC
|
|
|
|
|
>- intLib.COOPER_TAC >>
|
|
|
|
|
`0 ≤ i` by intLib.COOPER_TAC >>
|
|
|
|
|
fs [GSYM INT_OF_NUM] >>
|
|
|
|
|
`&(2 ** size) = 0` by intLib.COOPER_TAC >>
|
|
|
|
|
fs [])
|
|
|
|
|
>- (
|
|
|
|
|
eq_tac >> rw []
|
|
|
|
|
>- (
|
|
|
|
|
`2 ** size = 2 * 2 ** (size - 1)` by rw [GSYM EXP, ADD1] >> fs [] >>
|
|
|
|
|
intLib.COOPER_TAC)
|
|
|
|
|
>- intLib.COOPER_TAC
|
|
|
|
|
>- intLib.COOPER_TAC)
|
|
|
|
|
>- intLib.COOPER_TAC
|
|
|
|
|
QED
|
|
|
|
|
|
|
|
|
|
Theorem w2n_i2n:
|
|
|
|
|
∀w. w2n (w : 'a word) = i2n (IntV (w2i w) (dimindex (:'a)))
|
|
|
|
|
Proof
|
|
|
|
|
rw [i2n_def] >> Cases_on `w` >> fs []
|
|
|
|
|
>- (
|
|
|
|
|
`INT_MIN (:α) ≤ n`
|
|
|
|
|
by (
|
|
|
|
|
fs [w2i_def] >> rw [] >>
|
|
|
|
|
BasicProvers.EVERY_CASE_TAC >> fs [word_msb_n2w_numeric] >>
|
|
|
|
|
rfs []) >>
|
|
|
|
|
rw [w2i_n2w_neg, dimword_def, int_arithTheory.INT_NUM_SUB])
|
|
|
|
|
>- (
|
|
|
|
|
`n < INT_MIN (:'a)`
|
|
|
|
|
by (
|
|
|
|
|
fs [w2i_def] >> rw [] >>
|
|
|
|
|
BasicProvers.EVERY_CASE_TAC >> fs [word_msb_n2w_numeric] >>
|
|
|
|
|
rfs []) >>
|
|
|
|
|
rw [w2i_n2w_pos])
|
|
|
|
|
QED
|
|
|
|
|
|
|
|
|
|
Theorem w2i_n2w:
|
|
|
|
|
∀n. n < dimword (:'a) ⇒ IntV (w2i (n2w n : 'a word)) (dimindex (:'a)) = n2i n (dimindex (:'a))
|
|
|
|
|
Proof
|
|
|
|
|
rw [n2i_def]
|
|
|
|
|
>- (
|
|
|
|
|
qspec_then `n` mp_tac w2i_n2w_neg >>
|
|
|
|
|
fs [dimword_def, INT_MIN_def] >> rw [GSYM INT_SUB])
|
|
|
|
|
>- (irule w2i_n2w_pos >> rw [INT_MIN_def])
|
|
|
|
|
QED
|
|
|
|
|
|
|
|
|
|
Theorem eval_exp_ignores_lem:
|
|
|
|
|
∀s1 e v. eval_exp s1 e v ⇒ ∀s2. s1.locals = s2.locals ⇒ eval_exp s2 e v
|
|
|
|
|
Proof
|
|
|
|
|
ho_match_mp_tac eval_exp_ind >>
|
|
|
|
|
rw [] >> simp [Once eval_exp_cases] >>
|
|
|
|
|
TRY (qexists_tac `vals` >> rw [] >> fs [LIST_REL_EL_EQN] >> NO_TAC) >>
|
|
|
|
|
TRY (fs [LIST_REL_EL_EQN] >> NO_TAC) >>
|
|
|
|
|
metis_tac []
|
|
|
|
|
QED
|
|
|
|
|
|
|
|
|
|
Theorem eval_exp_ignores:
|
|
|
|
|
∀s1 e v s2. s1.locals = s2.locals ⇒ (eval_exp s1 e v ⇔ eval_exp s2 e v)
|
|
|
|
|
Proof
|
|
|
|
|
metis_tac [eval_exp_ignores_lem]
|
|
|
|
|
QED
|
|
|
|
|
|
|
|
|
|
Definition exp_uses_def:
|
|
|
|
|
(exp_uses (Var x) = {x}) ∧
|
|
|
|
|
(exp_uses Nondet = {}) ∧
|
|
|
|
|
(exp_uses (Label _) = {}) ∧
|
|
|
|
|
(exp_uses (Splat e1 e2) = exp_uses e1 ∪ exp_uses e2) ∧
|
|
|
|
|
(exp_uses (Memory e1 e2) = exp_uses e1 ∪ exp_uses e2) ∧
|
|
|
|
|
(exp_uses (Concat es) = bigunion (set (map exp_uses es))) ∧
|
|
|
|
|
(exp_uses (Integer _ _) = {}) ∧
|
|
|
|
|
(exp_uses (Eq e1 e2) = exp_uses e1 ∪ exp_uses e2) ∧
|
|
|
|
|
(exp_uses (Lt e1 e2) = exp_uses e1 ∪ exp_uses e2) ∧
|
|
|
|
|
(exp_uses (Ult e1 e2) = exp_uses e1 ∪ exp_uses e2) ∧
|
|
|
|
|
(exp_uses (Sub _ e1 e2) = exp_uses e1 ∪ exp_uses e2) ∧
|
|
|
|
|
(exp_uses (Record es) = bigunion (set (map exp_uses es))) ∧
|
|
|
|
|
(exp_uses (Select e1 e2) = exp_uses e1 ∪ exp_uses e2) ∧
|
|
|
|
|
(exp_uses (Update e1 e2 e3) = exp_uses e1 ∪ exp_uses e2 ∪ exp_uses e3) ∧
|
|
|
|
|
(exp_uses (Convert _ _ _ e) = exp_uses e)
|
|
|
|
|
Termination
|
|
|
|
|
WF_REL_TAC `measure exp_size` >> rw [] >>
|
|
|
|
|
Induct_on `es` >> rw [exp_size_def] >> res_tac >> rw []
|
|
|
|
|
End
|
|
|
|
|
|
|
|
|
|
Theorem eval_exp_ignores_unused_lem:
|
|
|
|
|
∀s1 e v.
|
|
|
|
|
eval_exp s1 e v ⇒
|
|
|
|
|
∀s2. DRESTRICT s1.locals (exp_uses e) = DRESTRICT s2.locals (exp_uses e) ⇒
|
|
|
|
|
eval_exp s2 e v
|
|
|
|
|
Proof
|
|
|
|
|
ho_match_mp_tac eval_exp_ind >>
|
|
|
|
|
rw [exp_uses_def] >> simp [Once eval_exp_cases]
|
|
|
|
|
>- (
|
|
|
|
|
fs [DRESTRICT_EQ_DRESTRICT, EXTENSION, FDOM_DRESTRICT] >>
|
|
|
|
|
imp_res_tac FLOOKUP_SUBMAP >>
|
|
|
|
|
fs [FLOOKUP_DRESTRICT]) >>
|
|
|
|
|
fs [drestrict_union_eq]
|
|
|
|
|
>- metis_tac []
|
|
|
|
|
>- metis_tac []
|
|
|
|
|
>- (
|
|
|
|
|
rpt (pop_assum mp_tac) >>
|
|
|
|
|
qid_spec_tac `vals` >>
|
|
|
|
|
Induct_on `es` >> rw [] >> Cases_on `vals` >> rw [PULL_EXISTS] >> fs [] >>
|
|
|
|
|
rw [] >> fs [drestrict_union_eq] >>
|
|
|
|
|
rename [`v1++flat vs`] >>
|
|
|
|
|
first_x_assum (qspec_then `vs` mp_tac) >> rw [] >>
|
|
|
|
|
qexists_tac `v1 :: vals'` >> rw [])
|
|
|
|
|
>- metis_tac []
|
|
|
|
|
>- metis_tac []
|
|
|
|
|
>- metis_tac []
|
|
|
|
|
>- metis_tac []
|
|
|
|
|
>- (
|
|
|
|
|
rpt (pop_assum mp_tac) >>
|
|
|
|
|
qid_spec_tac `vals` >>
|
|
|
|
|
Induct_on `es` >> rw [] >> fs [drestrict_union_eq])
|
|
|
|
|
>- metis_tac []
|
|
|
|
|
>- metis_tac []
|
|
|
|
|
>- metis_tac []
|
|
|
|
|
>- metis_tac []
|
|
|
|
|
QED
|
|
|
|
|
|
|
|
|
|
Theorem eval_exp_ignores_unused:
|
|
|
|
|
∀s1 e v s2. DRESTRICT s1.locals (exp_uses e) = DRESTRICT s2.locals (exp_uses e) ⇒ (eval_exp s1 e v ⇔ eval_exp s2 e v)
|
|
|
|
|
Proof
|
|
|
|
|
metis_tac [eval_exp_ignores_unused_lem]
|
|
|
|
|
QED
|
|
|
|
|
|
|
|
|
|
(* Relate the semantics of Convert to something more closely following the
|
|
|
|
|
* implementation *)
|
|
|
|
|
|
|
|
|
|
Definition Zextract_def:
|
|
|
|
|
Zextract (:'a) z off len = &w2n ((len+off-1 -- off) (i2w z : 'a word))
|
|
|
|
|
End
|
|
|
|
|
|
|
|
|
|
Definition Zsigned_extract_def:
|
|
|
|
|
Zsigned_extract (:'a) z off len = w2i ((len+off-1 --- off) (i2w z : 'a word))
|
|
|
|
|
End
|
|
|
|
|
|
|
|
|
|
(*
|
|
|
|
|
* Some tests of extract and signed_extract in both HOL and OCaml to check that
|
|
|
|
|
* we are defining the same thing *)
|
|
|
|
|
|
|
|
|
|
(*
|
|
|
|
|
EVAL ``
|
|
|
|
|
let bp1 = 0b11001100w : word8 in
|
|
|
|
|
let bp2 = 0b01011011w : word8 in
|
|
|
|
|
let i1 = &(w2n bp1) in
|
|
|
|
|
let i2 = w2i bp1 in
|
|
|
|
|
let i3 = &(w2n bp2) in
|
|
|
|
|
Zextract (:128) i1 0 8 = i1 ∧
|
|
|
|
|
Zextract (:128) i2 0 8 = i1 ∧
|
|
|
|
|
Zextract (:128) i3 0 8 = i3 ∧
|
|
|
|
|
Zsigned_extract (:128) i1 0 8 = i2 ∧
|
|
|
|
|
Zsigned_extract (:128) i2 0 8 = i2 ∧
|
|
|
|
|
Zsigned_extract (:128) i3 0 8 = i3 ∧
|
|
|
|
|
|
|
|
|
|
Zextract (:128) i1 2 4 = 3 ∧
|
|
|
|
|
Zextract (:128) i2 2 4 = 3 ∧
|
|
|
|
|
Zextract (:128) i1 2 5 = 19 ∧
|
|
|
|
|
Zextract (:128) i2 2 5 = 19 ∧
|
|
|
|
|
Zextract (:128) i3 1 2 = 1 ∧
|
|
|
|
|
Zextract (:128) i3 1 3 = 5 ∧
|
|
|
|
|
|
|
|
|
|
Zsigned_extract (:128) i1 2 4 = 3 ∧
|
|
|
|
|
Zsigned_extract (:128) i2 2 4 = 3 ∧
|
|
|
|
|
Zsigned_extract (:128) i1 2 5 = -13 ∧
|
|
|
|
|
Zsigned_extract (:128) i2 2 5 = -13 ∧
|
|
|
|
|
Zsigned_extract (:128) i3 1 2 = 1 ∧
|
|
|
|
|
Zsigned_extract (:128) i3 1 3 = -3``
|
|
|
|
|
|
|
|
|
|
let i1 = Z.of_int 0b11001100 in
|
|
|
|
|
let i2 = Z.of_int (-52) in
|
|
|
|
|
let i3 = Z.of_int 0b01011011 in
|
|
|
|
|
Z.extract i1 0 8 = i1 &&
|
|
|
|
|
Z.extract i2 0 8 = i1 &&
|
|
|
|
|
Z.extract i3 0 8 = i3 &&
|
|
|
|
|
Z.signed_extract i1 0 8 = i2 &&
|
|
|
|
|
Z.signed_extract i2 0 8 = i2 &&
|
|
|
|
|
Z.signed_extract i3 0 8 = i3 &&
|
|
|
|
|
|
|
|
|
|
Z.extract i1 2 4 = Z.of_int 3 &&
|
|
|
|
|
Z.extract i2 2 4 = Z.of_int 3 &&
|
|
|
|
|
Z.extract i1 2 5 = Z.of_int 19 &&
|
|
|
|
|
Z.extract i2 2 5 = Z.of_int 19 &&
|
|
|
|
|
Z.extract i3 1 2 = Z.of_int 1 &&
|
|
|
|
|
Z.extract i3 1 3 = Z.of_int 5 &&
|
|
|
|
|
|
|
|
|
|
Z.signed_extract i1 2 4 = Z.of_int 3 &&
|
|
|
|
|
Z.signed_extract i2 2 4 = Z.of_int 3 &&
|
|
|
|
|
Z.signed_extract i1 2 5 = Z.of_int (-13) &&
|
|
|
|
|
Z.signed_extract i2 2 5 = Z.of_int (-13) &&
|
|
|
|
|
Z.signed_extract i3 1 2 = Z.of_int 1 &&
|
|
|
|
|
Z.signed_extract i3 1 3 = Z.of_int (-3);;
|
|
|
|
|
*)
|
|
|
|
|
|
|
|
|
|
Definition extract_def:
|
|
|
|
|
extract (:'a) unsigned bits z =
|
|
|
|
|
if unsigned then Zextract (:'a) z 0 bits else Zsigned_extract (:'a) z 0 bits
|
|
|
|
|
End
|
|
|
|
|
|
|
|
|
|
Definition simp_convert_def:
|
|
|
|
|
simp_convert (:'a) unsigned dst src arg =
|
|
|
|
|
case (dst, src) of
|
|
|
|
|
| (IntegerT m, IntegerT n) =>
|
|
|
|
|
(if m ≤ n then
|
|
|
|
|
case arg of
|
|
|
|
|
| Integer data _ => Integer (extract (:'a) F m data) dst
|
|
|
|
|
| _ => Convert F dst src arg
|
|
|
|
|
else
|
|
|
|
|
case arg of
|
|
|
|
|
| Integer data _ => Integer (extract (:'a) unsigned n data) dst
|
|
|
|
|
| _ =>
|
|
|
|
|
if unsigned then Convert unsigned dst src arg
|
|
|
|
|
else arg)
|
|
|
|
|
| _ =>
|
|
|
|
|
if dst = src then arg
|
|
|
|
|
else Convert unsigned dst src arg
|
|
|
|
|
End
|
|
|
|
|
|
|
|
|
|
Theorem Zextract0:
|
|
|
|
|
dimindex (:'b) ≤ dimindex (:'a)
|
|
|
|
|
⇒
|
|
|
|
|
Zextract (:'a) i 0 (dimindex (:'b)) = &w2n (i2w i : 'b word)
|
|
|
|
|
Proof
|
|
|
|
|
rw [Zextract_def] >>
|
|
|
|
|
`w2n ((dimindex (:β) − 1 -- 0) (i2w i : 'a word)) =
|
|
|
|
|
w2n (w2w (i2w i : 'a word) : 'b word)`
|
|
|
|
|
by (
|
|
|
|
|
rw [w2n_w2w] >>
|
|
|
|
|
`dimindex (:'b) = dimindex (:'a)` by decide_tac >>
|
|
|
|
|
fs [WORD_ALL_BITS]) >>
|
|
|
|
|
rw [w2w_i2w]
|
|
|
|
|
QED
|
|
|
|
|
|
|
|
|
|
Theorem Zsigned_extract0:
|
|
|
|
|
dimindex (:'b) ≤ dimindex (:'a)
|
|
|
|
|
⇒
|
|
|
|
|
Zsigned_extract (:'a) i 0 (dimindex (:'b)) = w2i (i2w i : 'b word)
|
|
|
|
|
Proof
|
|
|
|
|
rw [Zsigned_extract_def] >>
|
|
|
|
|
rw [word_sign_extend_bits, word_sign_extend_def, ADD1] >>
|
|
|
|
|
`0 < dimindex (:'b) ⇒ dimindex (:'b) - 1 + 1 = dimindex (:'b)` by decide_tac >>
|
|
|
|
|
`min (dimindex (:β)) (dimindex (:α)) = dimindex (:β)` by fs [MIN_DEF] >>
|
|
|
|
|
rw [] >>
|
|
|
|
|
`w2n ((dimindex (:β) − 1 -- 0) (i2w i : 'a word)) =
|
|
|
|
|
w2n (w2w (i2w i : 'a word) : 'b word)`
|
|
|
|
|
by (
|
|
|
|
|
rw [w2n_w2w] >>
|
|
|
|
|
`dimindex (:'b) = dimindex (:'a)` by decide_tac >>
|
|
|
|
|
fs [WORD_ALL_BITS]) >>
|
|
|
|
|
rw [GSYM sw2sw_def, w2w_i2w] >>
|
|
|
|
|
rw [w21_sw2sw_extend]
|
|
|
|
|
QED
|
|
|
|
|
|
|
|
|
|
Theorem convert_implementation_fits:
|
|
|
|
|
∀unsigned dst src const i m n.
|
|
|
|
|
const = Integer i src ∧
|
|
|
|
|
src = IntegerT n ∧
|
|
|
|
|
dst = IntegerT m ∧ 0 < m ∧
|
|
|
|
|
ifits i (sizeof_bits src) ∧
|
|
|
|
|
dimindex (:'b) = min m n ∧
|
|
|
|
|
dimindex (:'b) ≤ dimindex (:'a)
|
|
|
|
|
⇒
|
|
|
|
|
∃i2. simp_convert (:'a) unsigned dst src const = Integer i2 dst ∧ ifits i2 m
|
|
|
|
|
Proof
|
|
|
|
|
rw [simp_convert_def, extract_def, MIN_DEF] >> fs []
|
|
|
|
|
>- (drule Zsigned_extract0 >> rw [] >> rw [ifits_w2i])
|
|
|
|
|
>- (
|
|
|
|
|
`m = dimindex (:'b)` by decide_tac >>
|
|
|
|
|
drule Zsigned_extract0 >> rw [] >> rw [ifits_w2i])
|
|
|
|
|
>- (
|
|
|
|
|
drule Zextract0 >> rw [] >> rw [w2n_i2w] >> fs [sizeof_bits_def] >>
|
|
|
|
|
fs [ifits_def, dimword_def] >> rw [] >>
|
|
|
|
|
qspecl_then [`i`, `&(2 ** dimindex (:β))`] mp_tac INT_MOD_BOUNDS >>
|
|
|
|
|
rw []
|
|
|
|
|
>- intLib.COOPER_TAC >>
|
|
|
|
|
`dimindex (:'b) < m` by decide_tac >>
|
|
|
|
|
`2 ** dimindex (:'b) ≤ 2 ** (m - 1)` suffices_by intLib.COOPER_TAC >>
|
|
|
|
|
rw [])
|
|
|
|
|
>- (
|
|
|
|
|
drule Zsigned_extract0 >> rw [] >>
|
|
|
|
|
irule ifits_mono >> qexists_tac `dimindex (:'b)` >> rw [ifits_w2i])
|
|
|
|
|
QED
|
|
|
|
|
|
|
|
|
|
Theorem convert_implementation:
|
|
|
|
|
∀h unsigned dst src const i m n.
|
|
|
|
|
const = Integer i src ∧
|
|
|
|
|
src = IntegerT n ∧ 0 < n ∧
|
|
|
|
|
dst = IntegerT m ∧
|
|
|
|
|
ifits i (sizeof_bits src) ∧
|
|
|
|
|
dimindex (:'b) = min m n ∧
|
|
|
|
|
dimindex (:'b) ≤ dimindex (:'a)
|
|
|
|
|
⇒
|
|
|
|
|
eval_exp h (Convert unsigned dst src const) =
|
|
|
|
|
eval_exp h (simp_convert (:'a) unsigned dst src const)
|
|
|
|
|
Proof
|
|
|
|
|
rw [EXTENSION, IN_DEF] >>
|
|
|
|
|
simp [simp_convert_def] >>
|
|
|
|
|
CASE_TAC >>
|
|
|
|
|
ONCE_REWRITE_TAC [eval_exp_cases] >>
|
|
|
|
|
fs [sizeof_bits_def] >>
|
|
|
|
|
ONCE_REWRITE_TAC [eval_exp_cases] >> rw [] >>
|
|
|
|
|
`0 < n` by decide_tac >>
|
|
|
|
|
`truncate_2comp i n = i` by metis_tac [fits_ident] >>
|
|
|
|
|
rw [] >>
|
|
|
|
|
Cases_on `unsigned` >> fs [extract_def] >>
|
|
|
|
|
irule (METIS_PROVE [] ``y = z ⇒ (x = y ⇔ x = z)``) >> rw []
|
|
|
|
|
>- ( (* Truncating, unsigned convert *)
|
|
|
|
|
drule Zsigned_extract0 >> rw [] >>
|
|
|
|
|
`min m n = m` by fs [MIN_DEF] >>
|
|
|
|
|
`∀i. truncate_2comp i (dimindex (:β)) = w2i (i2w i : 'b word)`
|
|
|
|
|
by rw [GSYM truncate_2comp_i2w_w2i] >>
|
|
|
|
|
fs [] >> rw [i2w_pos, i2n_def, i2w_def] >>
|
|
|
|
|
`?j. 0 ≤ j ∧ -i = j` by rw [] >>
|
|
|
|
|
`i = -j` by intLib.COOPER_TAC >>
|
|
|
|
|
simp [] >>
|
|
|
|
|
simp [GSYM int_sub] >>
|
|
|
|
|
`?k. j = &k` by metis_tac [NUM_POSINT_EXISTS] >>
|
|
|
|
|
simp [] >>
|
|
|
|
|
`k < 2 ** n`
|
|
|
|
|
by (fs [ifits_def] >> Cases_on `n` >> fs [ADD1, EXP_ADD]) >>
|
|
|
|
|
simp [INT_SUB, word_2comp_n2w, dimword_def] >>
|
|
|
|
|
qabbrev_tac `d = dimindex (:'b)` >>
|
|
|
|
|
`∃x. (2:num) ** n = 2 ** x * 2 ** d`
|
|
|
|
|
by (
|
|
|
|
|
`?x. n = x + d` by (qexists_tac `n - d` >> fs [MIN_DEF]) >>
|
|
|
|
|
metis_tac [EXP_ADD]) >>
|
|
|
|
|
metis_tac [MOD_COMPLEMENT, bitTheory.ZERO_LT_TWOEXP, MULT_COMM])
|
|
|
|
|
>- ( (* Truncating, signed convert *)
|
|
|
|
|
`min m n = m` by rw [MIN_DEF] >>
|
|
|
|
|
drule Zsigned_extract0 >> rw [] >> fs [] >>
|
|
|
|
|
`w2i (i2w i : 'b word) = truncate_2comp i m` by metis_tac [truncate_2comp_i2w_w2i] >>
|
|
|
|
|
rw [] >>
|
|
|
|
|
`0 < dimindex (:'b)` by rw [] >>
|
|
|
|
|
metis_tac [fits_ident, truncate_2comp_fits]) >>
|
|
|
|
|
(* extending *)
|
|
|
|
|
drule Zsigned_extract0 >> drule Zextract0 >> fs [MIN_DEF] >> rw [w2n_i2n] >>
|
|
|
|
|
`INT_MIN (:'b) ≤ i ∧ i ≤ INT_MAX (:'b)` suffices_by metis_tac [w2i_i2w] >>
|
|
|
|
|
fs [ifits_def, INT_MAX_def, INT_MIN_def, int_arithTheory.INT_NUM_SUB] >>
|
|
|
|
|
rw [DECIDE ``!(x:num). x < 1 ⇔ x = 0``,
|
|
|
|
|
intLib.COOPER_PROVE``!(x:int). x ≤ y -1 ⇔ x < y``]
|
|
|
|
|
QED
|
|
|
|
|
|
|
|
|
|
export_theory ();
|