You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

689 lines
20 KiB

(**************************************************************************)
(* *)
(* OCaml *)
(* *)
(* Xavier Leroy, projet Cristal, INRIA Rocquencourt *)
(* *)
(* Copyright 1996 Institut National de Recherche en Informatique et *)
(* en Automatique. *)
(* *)
(* All rights reserved. This file is distributed under the terms of *)
(* the GNU Lesser General Public License version 2.1, with the *)
(* special exception on linking described in the file LICENSE. *)
(* *)
(**************************************************************************)
(* Sets over ordered types *)
module type OrderedType =
sig
type t
val compare: t -> t -> int
end
module type S =
sig
type elt
type t
include Comparer.S with type t := t
val empty: t
val is_empty: t -> bool
val mem: elt -> t -> bool
val add: elt -> t -> t
val singleton: elt -> t
val remove: elt -> t -> t
val union: t -> t -> t
val inter: t -> t -> t
val disjoint: t -> t -> bool
val diff: t -> t -> t
val compare: t -> t -> int
module Provide_equal (_ : sig
type t = elt [@@deriving equal]
end) : sig
type t [@@deriving equal]
end
with type t := t
val subset: t -> t -> bool
val iter: (elt -> unit) -> t -> unit
val map: (elt -> elt) -> t -> t
val fold: (elt -> 'a -> 'a) -> t -> 'a -> 'a
val for_all: (elt -> bool) -> t -> bool
val exists: (elt -> bool) -> t -> bool
val filter: (elt -> bool) -> t -> t
val filter_map: (elt -> elt option) -> t -> t
val partition: (elt -> bool) -> t -> t * t
val cardinal: t -> int
val elements: t -> elt list
val min_elt: t -> elt
val min_elt_opt: t -> elt option
val max_elt: t -> elt
val max_elt_opt: t -> elt option
val choose: t -> elt
val choose_opt: t -> elt option
val split: elt -> t -> t * bool * t
val find: elt -> t -> elt
val find_opt: elt -> t -> elt option
val find_first: (elt -> bool) -> t -> elt
val find_first_opt: (elt -> bool) -> t -> elt option
val find_last: (elt -> bool) -> t -> elt
val find_last_opt: (elt -> bool) -> t -> elt option
val of_list: elt list -> t
val to_seq_from : elt -> t -> elt Seq.t
val to_seq : t -> elt Seq.t
val add_seq : elt Seq.t -> t -> t
val of_seq : elt Seq.t -> t
module Provide_sexp_of (_ : sig
type t = elt [@@deriving sexp_of]
end) : sig
type t [@@deriving sexp_of]
end
with type t := t
module Provide_of_sexp (_ : sig
type t = elt [@@deriving of_sexp]
end) : sig
type t [@@deriving of_sexp]
end
with type t := t
end
module T = struct
type ('elt, 'cmp) t =
| Empty
| Node of {l: ('elt, 'cmp) t; v: 'elt; r: ('elt, 'cmp) t; h: int}
(* Sets are represented by balanced binary trees (the heights of the
children differ by at most 2 *)
type ('elt, 'cmp) enumeration =
| End
| More of 'elt * ('elt, 'cmp) t * ('elt, 'cmp) enumeration
let rec cons_enum s e =
match s with
Empty -> e
| Node{l; v; r} -> cons_enum l (More(v, r, e))
let compare compare_elt _ s1 s2 =
let rec compare_aux e1 e2 =
match (e1, e2) with
(End, End) -> 0
| (End, _) -> -1
| (_, End) -> 1
| (More(v1, r1, e1), More(v2, r2, e2)) ->
let c = compare_elt v1 v2 in
if c <> 0
then c
else compare_aux (cons_enum r1 e1) (cons_enum r2 e2)
in
compare_aux (cons_enum s1 End) (cons_enum s2 End)
type 'compare_elt compare [@@deriving compare, equal, sexp]
end
include T
let equal equal_elt _ s1 s2 =
let rec equal_aux e1 e2 =
match (e1, e2) with
(End, End) -> true
| (End, _) -> false
| (_, End) -> false
| (More(v1, r1, e1), More(v2, r2, e2)) ->
equal_elt v1 v2 &&
equal_aux (cons_enum r1 e1) (cons_enum r2 e2)
in
equal_aux (cons_enum s1 End) (cons_enum s2 End)
let rec elements_aux accu = function
Empty -> accu
| Node{l; v; r} -> elements_aux (v :: elements_aux accu r) l
let elements s =
elements_aux [] s
let sexp_of_t sexp_of_elt _ s =
elements s
|> Sexplib.Conv.sexp_of_list sexp_of_elt
let height = function
Empty -> 0
| Node {h} -> h
(* Creates a new node with left son l, value v and right son r.
We must have all elements of l < v < all elements of r.
l and r must be balanced and | height l - height r | <= 2.
Inline expansion of height for better speed. *)
let create l v r =
let hl = match l with Empty -> 0 | Node {h} -> h in
let hr = match r with Empty -> 0 | Node {h} -> h in
Node{l; v; r; h=(if hl >= hr then hl + 1 else hr + 1)}
let of_sorted_list l =
let rec sub n l =
match n, l with
| 0, l -> Empty, l
| 1, x0 :: l -> Node {l=Empty; v=x0; r=Empty; h=1}, l
| 2, x0 :: x1 :: l ->
Node{l=Node{l=Empty; v=x0; r=Empty; h=1}; v=x1; r=Empty; h=2}, l
| 3, x0 :: x1 :: x2 :: l ->
Node{l=Node{l=Empty; v=x0; r=Empty; h=1}; v=x1;
r=Node{l=Empty; v=x2; r=Empty; h=1}; h=2}, l
| n, l ->
let nl = n / 2 in
let left, l = sub nl l in
match l with
| [] -> assert false
| mid :: l ->
let right, l = sub (n - nl - 1) l in
create left mid right, l
in
fst (sub (List.length l) l)
let t_of_sexp elt_of_sexp _ s =
Sexplib.Conv.list_of_sexp elt_of_sexp s
|> of_sorted_list
module Make(Ord: Comparer.S) =
struct
module Ord = struct
include Ord
let compare = (comparer :> t -> t -> int)
end
type elt = Ord.t
include (Comparer.Apply (T) (Ord))
module Provide_equal (Elt : sig
type t = Ord.t [@@deriving equal]
end) = struct
let equal l r = equal Elt.equal Ord.equal_compare l r
end
module Provide_sexp_of (Elt : sig
type t = Ord.t [@@deriving sexp_of]
end) = struct
let sexp_of_t s =
sexp_of_t Elt.sexp_of_t Ord.sexp_of_compare s
end
module Provide_of_sexp (Elt : sig
type t = Ord.t [@@deriving of_sexp]
end) = struct
let t_of_sexp s =
t_of_sexp Elt.t_of_sexp Ord.compare_of_sexp s
end
(* Same as create, but performs one step of rebalancing if necessary.
Assumes l and r balanced and | height l - height r | <= 3.
Inline expansion of create for better speed in the most frequent case
where no rebalancing is required. *)
let bal l v r =
let hl = match l with Empty -> 0 | Node {h} -> h in
let hr = match r with Empty -> 0 | Node {h} -> h in
if hl > hr + 2 then begin
match l with
Empty -> invalid_arg "Set.bal"
| Node{l=ll; v=lv; r=lr} ->
if height ll >= height lr then
create ll lv (create lr v r)
else begin
match lr with
Empty -> invalid_arg "Set.bal"
| Node{l=lrl; v=lrv; r=lrr}->
create (create ll lv lrl) lrv (create lrr v r)
end
end else if hr > hl + 2 then begin
match r with
Empty -> invalid_arg "Set.bal"
| Node{l=rl; v=rv; r=rr} ->
if height rr >= height rl then
create (create l v rl) rv rr
else begin
match rl with
Empty -> invalid_arg "Set.bal"
| Node{l=rll; v=rlv; r=rlr} ->
create (create l v rll) rlv (create rlr rv rr)
end
end else
Node{l; v; r; h=(if hl >= hr then hl + 1 else hr + 1)}
(* Insertion of one element *)
let rec add x = function
Empty -> Node{l=Empty; v=x; r=Empty; h=1}
| Node{l; v; r} as t ->
let c = Ord.compare x v in
if c = 0 then t else
if c < 0 then
let ll = add x l in
if l == ll then t else bal ll v r
else
let rr = add x r in
if r == rr then t else bal l v rr
let singleton x = Node{l=Empty; v=x; r=Empty; h=1}
(* Beware: those two functions assume that the added v is *strictly*
smaller (or bigger) than all the present elements in the tree; it
does not test for equality with the current min (or max) element.
Indeed, they are only used during the "join" operation which
respects this precondition.
*)
let rec add_min_element x = function
| Empty -> singleton x
| Node {l; v; r} ->
bal (add_min_element x l) v r
let rec add_max_element x = function
| Empty -> singleton x
| Node {l; v; r} ->
bal l v (add_max_element x r)
(* Same as create and bal, but no assumptions are made on the
relative heights of l and r. *)
let rec join l v r =
match (l, r) with
(Empty, _) -> add_min_element v r
| (_, Empty) -> add_max_element v l
| (Node{l=ll; v=lv; r=lr; h=lh}, Node{l=rl; v=rv; r=rr; h=rh}) ->
if lh > rh + 2 then bal ll lv (join lr v r) else
if rh > lh + 2 then bal (join l v rl) rv rr else
create l v r
(* Smallest and greatest element of a set *)
let rec min_elt = function
Empty -> raise Not_found
| Node{l=Empty; v} -> v
| Node{l} -> min_elt l
let rec min_elt_opt = function
Empty -> None
| Node{l=Empty; v} -> Some v
| Node{l} -> min_elt_opt l
let rec max_elt = function
Empty -> raise Not_found
| Node{v; r=Empty} -> v
| Node{r} -> max_elt r
let rec max_elt_opt = function
Empty -> None
| Node{v; r=Empty} -> Some v
| Node{r} -> max_elt_opt r
(* Remove the smallest element of the given set *)
let rec remove_min_elt = function
Empty -> invalid_arg "Set.remove_min_elt"
| Node{l=Empty; r} -> r
| Node{l; v; r} -> bal (remove_min_elt l) v r
(* Merge two trees l and r into one.
All elements of l must precede the elements of r.
Assume | height l - height r | <= 2. *)
let merge t1 t2 =
match (t1, t2) with
(Empty, t) -> t
| (t, Empty) -> t
| (_, _) -> bal t1 (min_elt t2) (remove_min_elt t2)
(* Merge two trees l and r into one.
All elements of l must precede the elements of r.
No assumption on the heights of l and r. *)
let concat t1 t2 =
match (t1, t2) with
(Empty, t) -> t
| (t, Empty) -> t
| (_, _) -> join t1 (min_elt t2) (remove_min_elt t2)
(* Splitting. split x s returns a triple (l, present, r) where
- l is the set of elements of s that are < x
- r is the set of elements of s that are > x
- present is false if s contains no element equal to x,
or true if s contains an element equal to x. *)
let rec split x = function
Empty ->
(Empty, false, Empty)
| Node{l; v; r} ->
let c = Ord.compare x v in
if c = 0 then (l, true, r)
else if c < 0 then
let (ll, pres, rl) = split x l in (ll, pres, join rl v r)
else
let (lr, pres, rr) = split x r in (join l v lr, pres, rr)
(* Implementation of the set operations *)
let empty = Empty
let is_empty = function Empty -> true | _ -> false
let rec mem x = function
Empty -> false
| Node{l; v; r} ->
let c = Ord.compare x v in
c = 0 || mem x (if c < 0 then l else r)
let rec remove x = function
Empty -> Empty
| (Node{l; v; r} as t) ->
let c = Ord.compare x v in
if c = 0 then merge l r
else
if c < 0 then
let ll = remove x l in
if l == ll then t
else bal ll v r
else
let rr = remove x r in
if r == rr then t
else bal l v rr
let rec union s1 s2 =
match (s1, s2) with
(Empty, t2) -> t2
| (t1, Empty) -> t1
| (Node{l=l1; v=v1; r=r1; h=h1}, Node{l=l2; v=v2; r=r2; h=h2}) ->
if h1 >= h2 then
if h2 = 1 then add v2 s1 else begin
let (l2, _, r2) = split v1 s2 in
join (union l1 l2) v1 (union r1 r2)
end
else
if h1 = 1 then add v1 s2 else begin
let (l1, _, r1) = split v2 s1 in
join (union l1 l2) v2 (union r1 r2)
end
let rec inter s1 s2 =
match (s1, s2) with
(Empty, _) -> Empty
| (_, Empty) -> Empty
| (Node{l=l1; v=v1; r=r1}, t2) ->
match split v1 t2 with
(l2, false, r2) ->
concat (inter l1 l2) (inter r1 r2)
| (l2, true, r2) ->
join (inter l1 l2) v1 (inter r1 r2)
(* Same as split, but compute the left and right subtrees
only if the pivot element is not in the set. The right subtree
is computed on demand. *)
type split_bis =
| Found
| NotFound of t * (unit -> t)
let rec split_bis x = function
Empty ->
NotFound (Empty, (fun () -> Empty))
| Node{l; v; r; _} ->
let c = Ord.compare x v in
if c = 0 then Found
else if c < 0 then
match split_bis x l with
| Found -> Found
| NotFound (ll, rl) -> NotFound (ll, (fun () -> join (rl ()) v r))
else
match split_bis x r with
| Found -> Found
| NotFound (lr, rr) -> NotFound (join l v lr, rr)
let rec disjoint s1 s2 =
match (s1, s2) with
(Empty, _) | (_, Empty) -> true
| (Node{l=l1; v=v1; r=r1}, t2) ->
if s1 == s2 then false
else match split_bis v1 t2 with
NotFound(l2, r2) -> disjoint l1 l2 && disjoint r1 (r2 ())
| Found -> false
let rec diff s1 s2 =
match (s1, s2) with
(Empty, _) -> Empty
| (t1, Empty) -> t1
| (Node{l=l1; v=v1; r=r1}, t2) ->
match split v1 t2 with
(l2, false, r2) ->
join (diff l1 l2) v1 (diff r1 r2)
| (l2, true, r2) ->
concat (diff l1 l2) (diff r1 r2)
let rec subset s1 s2 =
match (s1, s2) with
Empty, _ ->
true
| _, Empty ->
false
| Node {l=l1; v=v1; r=r1}, (Node {l=l2; v=v2; r=r2} as t2) ->
let c = Ord.compare v1 v2 in
if c = 0 then
subset l1 l2 && subset r1 r2
else if c < 0 then
subset (Node {l=l1; v=v1; r=Empty; h=0}) l2 && subset r1 t2
else
subset (Node {l=Empty; v=v1; r=r1; h=0}) r2 && subset l1 t2
let rec iter f = function
Empty -> ()
| Node{l; v; r} -> iter f l; f v; iter f r
let rec fold f s accu =
match s with
Empty -> accu
| Node{l; v; r} -> fold f r (f v (fold f l accu))
let rec for_all p = function
Empty -> true
| Node{l; v; r} -> p v && for_all p l && for_all p r
let rec exists p = function
Empty -> false
| Node{l; v; r} -> p v || exists p l || exists p r
let rec filter p = function
Empty -> Empty
| (Node{l; v; r}) as t ->
(* call [p] in the expected left-to-right order *)
let l' = filter p l in
let pv = p v in
let r' = filter p r in
if pv then
if l==l' && r==r' then t else join l' v r'
else concat l' r'
let rec partition p = function
Empty -> (Empty, Empty)
| Node{l; v; r} ->
(* call [p] in the expected left-to-right order *)
let (lt, lf) = partition p l in
let pv = p v in
let (rt, rf) = partition p r in
if pv
then (join lt v rt, concat lf rf)
else (concat lt rt, join lf v rf)
let rec cardinal = function
Empty -> 0
| Node{l; r} -> cardinal l + 1 + cardinal r
let elements = elements
let choose = min_elt
let choose_opt = min_elt_opt
let rec find x = function
Empty -> raise Not_found
| Node{l; v; r} ->
let c = Ord.compare x v in
if c = 0 then v
else find x (if c < 0 then l else r)
let rec find_first_aux v0 f = function
Empty ->
v0
| Node{l; v; r} ->
if f v then
find_first_aux v f l
else
find_first_aux v0 f r
let rec find_first f = function
Empty ->
raise Not_found
| Node{l; v; r} ->
if f v then
find_first_aux v f l
else
find_first f r
let rec find_first_opt_aux v0 f = function
Empty ->
Some v0
| Node{l; v; r} ->
if f v then
find_first_opt_aux v f l
else
find_first_opt_aux v0 f r
let rec find_first_opt f = function
Empty ->
None
| Node{l; v; r} ->
if f v then
find_first_opt_aux v f l
else
find_first_opt f r
let rec find_last_aux v0 f = function
Empty ->
v0
| Node{l; v; r} ->
if f v then
find_last_aux v f r
else
find_last_aux v0 f l
let rec find_last f = function
Empty ->
raise Not_found
| Node{l; v; r} ->
if f v then
find_last_aux v f r
else
find_last f l
let rec find_last_opt_aux v0 f = function
Empty ->
Some v0
| Node{l; v; r} ->
if f v then
find_last_opt_aux v f r
else
find_last_opt_aux v0 f l
let rec find_last_opt f = function
Empty ->
None
| Node{l; v; r} ->
if f v then
find_last_opt_aux v f r
else
find_last_opt f l
let rec find_opt x = function
Empty -> None
| Node{l; v; r} ->
let c = Ord.compare x v in
if c = 0 then Some v
else find_opt x (if c < 0 then l else r)
let try_join l v r =
(* [join l v r] can only be called when (elements of l < v <
elements of r); use [try_join l v r] when this property may
not hold, but you hope it does hold in the common case *)
if (l = Empty || Ord.compare (max_elt l) v < 0)
&& (r = Empty || Ord.compare v (min_elt r) < 0)
then join l v r
else union l (add v r)
let rec map f = function
| Empty -> Empty
| Node{l; v; r} as t ->
(* enforce left-to-right evaluation order *)
let l' = map f l in
let v' = f v in
let r' = map f r in
if l == l' && v == v' && r == r' then t
else try_join l' v' r'
let try_concat t1 t2 =
match (t1, t2) with
(Empty, t) -> t
| (t, Empty) -> t
| (_, _) -> try_join t1 (min_elt t2) (remove_min_elt t2)
let rec filter_map f = function
| Empty -> Empty
| Node{l; v; r} as t ->
(* enforce left-to-right evaluation order *)
let l' = filter_map f l in
let v' = f v in
let r' = filter_map f r in
begin match v' with
| Some v' ->
if l == l' && v == v' && r == r' then t
else try_join l' v' r'
| None ->
try_concat l' r'
end
let of_list l =
match l with
| [] -> empty
| [x0] -> singleton x0
| [x0; x1] -> add x1 (singleton x0)
| [x0; x1; x2] -> add x2 (add x1 (singleton x0))
| [x0; x1; x2; x3] -> add x3 (add x2 (add x1 (singleton x0)))
| [x0; x1; x2; x3; x4] -> add x4 (add x3 (add x2 (add x1 (singleton x0))))
| _ -> of_sorted_list (List.sort_uniq ~cmp:Ord.compare l)
let add_seq i m =
Seq.fold_left (fun s x -> add x s) m i
let of_seq i = add_seq i empty
let rec seq_of_enum_ c () = match c with
| End -> Seq.Nil
| More (x, t, rest) -> Seq.Cons (x, seq_of_enum_ (cons_enum t rest))
let to_seq c = seq_of_enum_ (cons_enum c End)
let to_seq_from low s =
let rec aux low s c = match s with
| Empty -> c
| Node {l; r; v; _} ->
begin match Ord.compare v low with
| 0 -> More (v, r, c)
| n when n<0 -> aux low r c
| _ -> aux low l (More (v, r, c))
end
in
seq_of_enum_ (aux low s End)
end