|
|
|
|
(*
|
|
|
|
|
* Copyright (c) Facebook, Inc. and its affiliates.
|
|
|
|
|
*
|
|
|
|
|
* This source code is licensed under the MIT license found in the
|
|
|
|
|
* LICENSE file in the root directory of this source tree.
|
|
|
|
|
*)
|
|
|
|
|
|
|
|
|
|
(** Frame Inference Solver over Symbolic Heaps *)
|
|
|
|
|
|
|
|
|
|
module Goal : sig
|
|
|
|
|
(** Excision judgment
|
|
|
|
|
|
|
|
|
|
∀us. Common ❮ Minuend ⊢ ∃xs. Subtrahend ❯ ∃zs. Remainder
|
|
|
|
|
|
|
|
|
|
is valid iff
|
|
|
|
|
|
|
|
|
|
Common * Minuend ⊧ ∃xs. Common * Subtrahend * ∃zs. Remainder
|
|
|
|
|
|
|
|
|
|
is universally valid semantically.
|
|
|
|
|
|
|
|
|
|
Terminology analogous to arithmetic subtraction is used: "minuend" is
|
|
|
|
|
a formula from which another, the subtrahend, is to be subtracted; and
|
|
|
|
|
"subtrahend" is a formula to be subtracted from another, the minuend. *)
|
|
|
|
|
type t = private
|
|
|
|
|
{ us: Var.Set.t (** (universal) vocabulary of entire judgment *)
|
|
|
|
|
; com: Sh.t (** common star-conjunct of minuend and subtrahend *)
|
|
|
|
|
; min: Sh.t
|
|
|
|
|
(** minuend, cong strengthened by pure_approx (com * min) *)
|
|
|
|
|
; xs: Var.Set.t (** existentials over subtrahend and remainder *)
|
|
|
|
|
; sub: Sh.t (** subtrahend, cong strengthened by min.cong *)
|
|
|
|
|
; zs: Var.Set.t (** existentials over remainder *)
|
|
|
|
|
; pgs: bool (** indicates whether a deduction rule has been applied *)
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
val pp : t pp
|
|
|
|
|
|
|
|
|
|
val goal :
|
|
|
|
|
us:Var.Set.t
|
|
|
|
|
-> com:Sh.t
|
|
|
|
|
-> min:Sh.t
|
|
|
|
|
-> xs:Var.Set.t
|
|
|
|
|
-> sub:Sh.t
|
|
|
|
|
-> zs:Var.Set.t
|
|
|
|
|
-> pgs:bool
|
|
|
|
|
-> t
|
|
|
|
|
|
|
|
|
|
val with_ :
|
|
|
|
|
?us:Var.Set.t
|
|
|
|
|
-> ?com:Sh.t
|
|
|
|
|
-> ?min:Sh.t
|
|
|
|
|
-> ?xs:Var.Set.t
|
|
|
|
|
-> ?sub:Sh.t
|
|
|
|
|
-> ?zs:Var.Set.t
|
|
|
|
|
-> ?pgs:bool
|
|
|
|
|
-> t
|
|
|
|
|
-> t
|
|
|
|
|
end = struct
|
|
|
|
|
type t =
|
|
|
|
|
{ us: Var.Set.t
|
|
|
|
|
; com: Sh.t
|
|
|
|
|
; min: Sh.t
|
|
|
|
|
; xs: Var.Set.t
|
|
|
|
|
; sub: Sh.t
|
|
|
|
|
; zs: Var.Set.t
|
|
|
|
|
; pgs: bool }
|
|
|
|
|
[@@deriving sexp]
|
|
|
|
|
|
|
|
|
|
let pp fs {com; min; xs; sub; pgs} =
|
|
|
|
|
Format.fprintf fs "@[<hv>%s %a@ | %a@ @[\\- %a%a@]@]"
|
|
|
|
|
(if pgs then "t" else "f")
|
|
|
|
|
Sh.pp com Sh.pp min Var.Set.pp_xs xs
|
|
|
|
|
(Sh.pp_diff_eq ~us:(Set.union min.us sub.us) ~xs min.cong)
|
|
|
|
|
sub
|
|
|
|
|
|
|
|
|
|
let invariant g =
|
|
|
|
|
Invariant.invariant [%here] g [%sexp_of: t]
|
|
|
|
|
@@ fun () ->
|
|
|
|
|
try
|
|
|
|
|
let {us; com; min; xs; sub; zs; pgs= _} = g in
|
|
|
|
|
assert (Set.equal us com.us) ;
|
|
|
|
|
assert (Set.equal us min.us) ;
|
|
|
|
|
assert (Set.equal (Set.union us xs) sub.us) ;
|
|
|
|
|
assert (Set.disjoint us xs) ;
|
|
|
|
|
assert (Set.is_subset zs ~of_:(Set.union us xs))
|
|
|
|
|
with exc -> [%Trace.info "%a" pp g] ; raise exc
|
|
|
|
|
|
|
|
|
|
let with_ ?us ?com ?min ?xs ?sub ?zs ?pgs g =
|
|
|
|
|
let xs = Option.value xs ~default:g.xs in
|
|
|
|
|
let zs = Option.value zs ~default:g.zs in
|
|
|
|
|
let new_us =
|
|
|
|
|
let us = Option.value us ~default:Var.Set.empty in
|
|
|
|
|
let us =
|
|
|
|
|
Option.fold
|
|
|
|
|
~f:(fun us sub -> Set.union (Set.diff sub.Sh.us xs) us)
|
|
|
|
|
sub ~init:us
|
|
|
|
|
in
|
|
|
|
|
let union_us q_opt us' =
|
|
|
|
|
Option.fold ~f:(fun us' q -> Set.union q.Sh.us us') q_opt ~init:us'
|
|
|
|
|
in
|
|
|
|
|
union_us com (union_us min us)
|
|
|
|
|
in
|
|
|
|
|
let com = Sh.extend_us new_us (Option.value com ~default:g.com) in
|
|
|
|
|
let min = Sh.extend_us new_us (Option.value min ~default:g.min) in
|
|
|
|
|
let xs, sub, zs =
|
|
|
|
|
match sub with
|
|
|
|
|
| Some sub ->
|
|
|
|
|
let sub = Sh.extend_us (Set.union new_us xs) sub in
|
|
|
|
|
let ys, sub = Sh.bind_exists sub ~wrt:xs in
|
|
|
|
|
let xs = Set.union xs ys in
|
|
|
|
|
let zs = Set.union zs ys in
|
|
|
|
|
(xs, sub, zs)
|
|
|
|
|
| None ->
|
|
|
|
|
let sub = Sh.extend_us new_us (Option.value sub ~default:g.sub) in
|
|
|
|
|
(xs, sub, zs)
|
|
|
|
|
in
|
|
|
|
|
let pgs = Option.value pgs ~default:g.pgs in
|
|
|
|
|
{us= min.us; com; min; xs; sub; zs; pgs} |> check invariant
|
|
|
|
|
|
|
|
|
|
let goal ~us ~com ~min ~xs ~sub ~zs ~pgs =
|
|
|
|
|
with_ ~us ~com ~min ~xs ~sub ~zs ~pgs
|
|
|
|
|
{ us= Var.Set.empty
|
|
|
|
|
; com= Sh.emp
|
|
|
|
|
; min= Sh.emp
|
|
|
|
|
; xs= Var.Set.empty
|
|
|
|
|
; sub= Sh.emp
|
|
|
|
|
; zs= Var.Set.empty
|
|
|
|
|
; pgs= false }
|
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
open Goal
|
|
|
|
|
|
|
|
|
|
let fresh_var name vs zs ~wrt =
|
|
|
|
|
let v, wrt = Var.fresh name ~wrt in
|
|
|
|
|
let vs = Set.add vs v in
|
|
|
|
|
let zs = Set.add zs v in
|
|
|
|
|
let v = Term.var v in
|
|
|
|
|
(v, vs, zs, wrt)
|
|
|
|
|
|
|
|
|
|
let excise (k : Trace.pf -> _) = [%Trace.infok k]
|
|
|
|
|
let trace (k : Trace.pf -> _) = [%Trace.infok k]
|
|
|
|
|
|
|
|
|
|
let excise_exists goal =
|
|
|
|
|
trace (fun {pf} -> pf "@[<2>excise_exists@ %a@]" pp goal) ;
|
|
|
|
|
if Set.is_empty goal.xs then goal
|
|
|
|
|
else
|
|
|
|
|
let solutions_for_xs =
|
|
|
|
|
let xs =
|
|
|
|
|
Set.diff goal.xs (Sh.fv ~ignore_cong:() (Sh.with_pure [] goal.sub))
|
|
|
|
|
in
|
|
|
|
|
Equality.solve_for_vars [Var.Set.empty; goal.us; xs] goal.sub.cong
|
|
|
|
|
in
|
|
|
|
|
if Equality.Subst.is_empty solutions_for_xs then goal
|
|
|
|
|
else
|
|
|
|
|
let removed =
|
|
|
|
|
Set.diff goal.xs
|
|
|
|
|
(Sh.fv ~ignore_cong:() (Sh.norm solutions_for_xs goal.sub))
|
|
|
|
|
in
|
|
|
|
|
if Set.is_empty removed then goal
|
|
|
|
|
else
|
|
|
|
|
let _, removed, witnesses =
|
|
|
|
|
Equality.Subst.partition_valid removed solutions_for_xs
|
|
|
|
|
in
|
|
|
|
|
if Equality.Subst.is_empty witnesses then goal
|
|
|
|
|
else (
|
|
|
|
|
excise (fun {pf} ->
|
|
|
|
|
pf "@[<2>excise_exists @[%a%a@]@]" Var.Set.pp_xs removed
|
|
|
|
|
Equality.Subst.pp witnesses ) ;
|
|
|
|
|
let us = Set.union goal.us removed in
|
|
|
|
|
let xs = Set.diff goal.xs removed in
|
|
|
|
|
let min = Sh.and_subst witnesses goal.min in
|
|
|
|
|
goal |> with_ ~us ~min ~xs ~pgs:true )
|
|
|
|
|
|
|
|
|
|
let excise_term ({min} as goal) pure term =
|
|
|
|
|
let term' = Equality.normalize min.cong term in
|
|
|
|
|
if Term.is_false term' then None
|
|
|
|
|
else if Term.is_true term' then (
|
|
|
|
|
excise (fun {pf} -> pf "excise_pure %a" Term.pp term) ;
|
|
|
|
|
Some (goal |> with_ ~pgs:true, pure) )
|
|
|
|
|
else Some (goal, term' :: pure)
|
|
|
|
|
|
|
|
|
|
let excise_pure ({sub} as goal) =
|
|
|
|
|
trace (fun {pf} -> pf "@[<2>excise_pure@ %a@]" pp goal) ;
|
|
|
|
|
let+ goal, pure =
|
|
|
|
|
List.fold_option sub.pure ~init:(goal, []) ~f:(fun (goal, pure) term ->
|
|
|
|
|
excise_term goal pure term )
|
|
|
|
|
in
|
|
|
|
|
goal |> with_ ~sub:(Sh.with_pure pure sub)
|
|
|
|
|
|
|
|
|
|
(* [k; o)
|
|
|
|
|
* ⊢ [l; n)
|
|
|
|
|
*
|
|
|
|
|
* _ ⊢ k=l * o=n
|
|
|
|
|
*
|
|
|
|
|
* ∀us.
|
|
|
|
|
* C * k-[b;m)->⟨o,α⟩
|
|
|
|
|
* ❮ M
|
|
|
|
|
* ⊢ ∃xs.
|
|
|
|
|
* b=b' * m=m' * α=α' * S ❯ R
|
|
|
|
|
* --------------------------------------------------------------
|
|
|
|
|
* ∀us. C ❮ k-[b;m)->⟨o,α⟩ * M ⊢ ∃xs. l-[b';m')->⟨n,α'⟩ * S ❯ R
|
|
|
|
|
*)
|
|
|
|
|
let excise_seg_same ({com; min; sub} as goal) msg ssg =
|
|
|
|
|
excise (fun {pf} ->
|
|
|
|
|
pf "@[<hv 2>excise_seg_same@ %a@ \\- %a@]" (Sh.pp_seg_norm sub.cong)
|
|
|
|
|
msg (Sh.pp_seg_norm sub.cong) ssg ) ;
|
|
|
|
|
let {Sh.bas= b; len= m; arr= a} = msg in
|
|
|
|
|
let {Sh.bas= b'; len= m'; arr= a'} = ssg in
|
|
|
|
|
let com = Sh.star (Sh.seg msg) com in
|
|
|
|
|
let min = Sh.rem_seg msg min in
|
|
|
|
|
let sub =
|
|
|
|
|
Sh.and_ (Term.eq b b')
|
|
|
|
|
(Sh.and_ (Term.eq m m') (Sh.and_ (Term.eq a a') (Sh.rem_seg ssg sub)))
|
|
|
|
|
in
|
|
|
|
|
goal |> with_ ~com ~min ~sub
|
|
|
|
|
|
|
|
|
|
(* [k; o)
|
|
|
|
|
* ⊢ [l; n)
|
|
|
|
|
*
|
|
|
|
|
* _ ⊢ k=l * o>n
|
|
|
|
|
*
|
|
|
|
|
* ∀us,α₀,α₁.
|
|
|
|
|
* C * k-[b;m)->⟨n,α₀⟩
|
|
|
|
|
* ❮ k+n-[b;m)->⟨o-n,α₁⟩ * ⟨o,α⟩=⟨n,α₀⟩^⟨o-n,α₁⟩ * M
|
|
|
|
|
* ⊢ ∃xs.
|
|
|
|
|
* b=b' * m=m' * α₀=α' * S ❯ R
|
|
|
|
|
* ----------------------------------------------------------------------
|
|
|
|
|
* ∀us. C ❮ k-[b;m)->⟨o,α⟩ * M ⊢ ∃xs. l-[b';m')->⟨n,α'⟩ * S ❯ ∃α₀,α₁. R
|
|
|
|
|
*)
|
|
|
|
|
let excise_seg_sub_prefix ({us; com; min; xs; sub; zs} as goal) msg ssg o_n
|
|
|
|
|
=
|
|
|
|
|
excise (fun {pf} ->
|
|
|
|
|
pf "@[<hv 2>excise_seg_sub_prefix@ %a@ \\- %a@]"
|
|
|
|
|
(Sh.pp_seg_norm sub.cong) msg (Sh.pp_seg_norm sub.cong) ssg ) ;
|
|
|
|
|
let {Sh.loc= k; bas= b; len= m; siz= o; arr= a} = msg in
|
|
|
|
|
let {Sh.bas= b'; len= m'; siz= n; arr= a'} = ssg in
|
|
|
|
|
let o_n = Term.integer o_n in
|
|
|
|
|
let a0, us, zs, wrt = fresh_var "a0" us zs ~wrt:(Set.union us xs) in
|
|
|
|
|
let a1, us, zs, _ = fresh_var "a1" us zs ~wrt in
|
|
|
|
|
let xs = Set.diff xs (Term.fv n) in
|
|
|
|
|
let com = Sh.star (Sh.seg {msg with siz= n; arr= a0}) com in
|
|
|
|
|
let min =
|
|
|
|
|
Sh.and_
|
|
|
|
|
(Term.eq_concat (o, a) [|(n, a0); (o_n, a1)|])
|
|
|
|
|
(Sh.star
|
|
|
|
|
(Sh.seg {loc= Term.add k n; bas= b; len= m; siz= o_n; arr= a1})
|
|
|
|
|
(Sh.rem_seg msg min))
|
|
|
|
|
in
|
|
|
|
|
let sub =
|
|
|
|
|
Sh.and_ (Term.eq b b')
|
|
|
|
|
(Sh.and_ (Term.eq m m')
|
|
|
|
|
(Sh.and_ (Term.eq a0 a') (Sh.rem_seg ssg sub)))
|
|
|
|
|
in
|
|
|
|
|
goal |> with_ ~us ~com ~min ~xs ~sub ~zs
|
|
|
|
|
|
|
|
|
|
(* [k; o)
|
|
|
|
|
* ⊢ [l; n)
|
|
|
|
|
*
|
|
|
|
|
* _ ⊢ k=l * o<n
|
|
|
|
|
*
|
|
|
|
|
* ∀us.
|
|
|
|
|
* C * k-[b;m)->⟨o,α⟩
|
|
|
|
|
* ❮ M
|
|
|
|
|
* ⊢ ∃xs,α₁'.
|
|
|
|
|
* b=b' * m=m' * ⟨o,α⟩^⟨n-o,α₁'⟩=⟨n,α'⟩
|
|
|
|
|
* * l+o-[b';m')->⟨n-o,α₁'⟩ * S ❯ R
|
|
|
|
|
* --------------------------------------------------------------------
|
|
|
|
|
* ∀us. C ❮ k-[b;m)->⟨o,α⟩ * M ⊢ ∃xs. l-[b';m')->⟨n,α'⟩ * S ❯ ∃α₁'. R
|
|
|
|
|
*)
|
|
|
|
|
let excise_seg_min_prefix ({us; com; min; xs; sub; zs} as goal) msg ssg n_o
|
|
|
|
|
=
|
|
|
|
|
excise (fun {pf} ->
|
|
|
|
|
pf "@[<hv 2>excise_seg_min_prefix@ %a@ \\- %a@]"
|
|
|
|
|
(Sh.pp_seg_norm sub.cong) msg (Sh.pp_seg_norm sub.cong) ssg ) ;
|
|
|
|
|
let {Sh.bas= b; len= m; siz= o; arr= a} = msg in
|
|
|
|
|
let {Sh.loc= l; bas= b'; len= m'; siz= n; arr= a'} = ssg in
|
|
|
|
|
let n_o = Term.integer n_o in
|
|
|
|
|
let com = Sh.star (Sh.seg msg) com in
|
|
|
|
|
let min = Sh.rem_seg msg min in
|
|
|
|
|
let a1', xs, zs, _ = fresh_var "a1" xs zs ~wrt:(Set.union us xs) in
|
|
|
|
|
let sub =
|
|
|
|
|
Sh.and_ (Term.eq b b')
|
|
|
|
|
(Sh.and_ (Term.eq m m')
|
|
|
|
|
(Sh.and_
|
|
|
|
|
(Term.eq_concat (n, a') [|(o, a); (n_o, a1')|])
|
|
|
|
|
(Sh.star
|
|
|
|
|
(Sh.seg
|
|
|
|
|
{loc= Term.add l o; bas= b'; len= m'; siz= n_o; arr= a1'})
|
|
|
|
|
(Sh.rem_seg ssg sub))))
|
|
|
|
|
in
|
|
|
|
|
goal |> with_ ~com ~min ~xs ~sub ~zs
|
|
|
|
|
|
|
|
|
|
(* [k; o)
|
|
|
|
|
* ⊢ [l; n)
|
|
|
|
|
*
|
|
|
|
|
* _ ⊢ k<l * k+o=l+n
|
|
|
|
|
*
|
|
|
|
|
* ∀us,α₀,α₁.
|
|
|
|
|
* C * l-[b;m)->⟨n,α₁⟩
|
|
|
|
|
* ❮ ⟨o,α⟩=⟨l-k,α₀⟩^⟨n,α₁⟩ * k-[b;m)->⟨l-k,α₀⟩ * M
|
|
|
|
|
* ⊢ ∃xs.
|
|
|
|
|
* b=b' * m=m' * α₁=α' * S ❯ R
|
|
|
|
|
* ----------------------------------------------------------------------
|
|
|
|
|
* ∀us. C ❮ k-[b;m)->⟨o,α⟩ * M ⊢ ∃xs. l-[b';m')->⟨n,α'⟩ * S ❯ ∃α₀,α₁. R
|
|
|
|
|
*)
|
|
|
|
|
let excise_seg_sub_suffix ({us; com; min; xs; sub; zs} as goal) msg ssg l_k
|
|
|
|
|
=
|
|
|
|
|
excise (fun {pf} ->
|
|
|
|
|
pf "@[<hv 2>excise_seg_sub_suffix@ %a@ \\- %a@]"
|
|
|
|
|
(Sh.pp_seg_norm sub.cong) msg (Sh.pp_seg_norm sub.cong) ssg ) ;
|
|
|
|
|
let {Sh.loc= k; bas= b; len= m; siz= o; arr= a} = msg in
|
|
|
|
|
let {Sh.loc= l; bas= b'; len= m'; siz= n; arr= a'} = ssg in
|
|
|
|
|
let l_k = Term.integer l_k in
|
|
|
|
|
let a0, us, zs, wrt = fresh_var "a0" us zs ~wrt:(Set.union us xs) in
|
|
|
|
|
let a1, us, zs, _ = fresh_var "a1" us zs ~wrt in
|
|
|
|
|
let xs = Set.diff xs (Term.fv n) in
|
|
|
|
|
let com =
|
|
|
|
|
Sh.star (Sh.seg {loc= l; bas= b; len= m; siz= n; arr= a1}) com
|
|
|
|
|
in
|
|
|
|
|
let min =
|
|
|
|
|
Sh.and_
|
|
|
|
|
(Term.eq_concat (o, a) [|(l_k, a0); (n, a1)|])
|
|
|
|
|
(Sh.star
|
|
|
|
|
(Sh.seg {loc= k; bas= b; len= m; siz= l_k; arr= a0})
|
|
|
|
|
(Sh.rem_seg msg min))
|
|
|
|
|
in
|
|
|
|
|
let sub =
|
|
|
|
|
Sh.and_ (Term.eq b b')
|
|
|
|
|
(Sh.and_ (Term.eq m m')
|
|
|
|
|
(Sh.and_ (Term.eq a1 a') (Sh.rem_seg ssg sub)))
|
|
|
|
|
in
|
|
|
|
|
goal |> with_ ~us ~com ~min ~xs ~sub ~zs
|
|
|
|
|
|
|
|
|
|
(* [k; o)
|
|
|
|
|
* ⊢ [l; n)
|
|
|
|
|
*
|
|
|
|
|
* _ ⊢ k<l * k+o>l+n
|
|
|
|
|
*
|
|
|
|
|
* ∀us,α₀,α₁,α₂.
|
|
|
|
|
* C * l-[b;m)->⟨n,α₁⟩
|
|
|
|
|
* ❮ k-[b;m)->⟨l-k,α₀⟩ * l+n-[b;m)->⟨k+o-(l+n),α₂⟩
|
|
|
|
|
* * ⟨o,α⟩=⟨l-k,α₀⟩^⟨n,α₁⟩^⟨k+o-(l+n),α₂⟩ * M
|
|
|
|
|
* ⊢ ∃xs.
|
|
|
|
|
* b=b' * m=m' * α₁=α' * S ❯ R
|
|
|
|
|
* -------------------------------------------------------------------------
|
|
|
|
|
* ∀us. C ❮ k-[b;m)->⟨o,α⟩ * M ⊢ ∃xs. l-[b';m')->⟨n,α'⟩ * S ❯ ∃α₀,α₁,α₂. R
|
|
|
|
|
*)
|
|
|
|
|
let excise_seg_sub_infix ({us; com; min; xs; sub; zs} as goal) msg ssg l_k
|
|
|
|
|
ko_ln =
|
|
|
|
|
excise (fun {pf} ->
|
|
|
|
|
pf "@[<hv 2>excise_seg_sub_infix@ %a@ \\- %a@]"
|
|
|
|
|
(Sh.pp_seg_norm sub.cong) msg (Sh.pp_seg_norm sub.cong) ssg ) ;
|
|
|
|
|
let {Sh.loc= k; bas= b; len= m; siz= o; arr= a} = msg in
|
|
|
|
|
let {Sh.loc= l; bas= b'; len= m'; siz= n; arr= a'} = ssg in
|
|
|
|
|
let l_k = Term.integer l_k in
|
|
|
|
|
let ko_ln = Term.integer ko_ln in
|
|
|
|
|
let ln = Term.add l n in
|
|
|
|
|
let a0, us, zs, wrt = fresh_var "a0" us zs ~wrt:(Set.union us xs) in
|
|
|
|
|
let a1, us, zs, wrt = fresh_var "a1" us zs ~wrt in
|
|
|
|
|
let a2, us, zs, _ = fresh_var "a2" us zs ~wrt in
|
|
|
|
|
let xs = Set.diff xs (Set.union (Term.fv l) (Term.fv n)) in
|
|
|
|
|
let com =
|
|
|
|
|
Sh.star (Sh.seg {loc= l; bas= b; len= m; siz= n; arr= a1}) com
|
|
|
|
|
in
|
|
|
|
|
let min =
|
|
|
|
|
Sh.and_
|
|
|
|
|
(Term.eq_concat (o, a) [|(l_k, a0); (n, a1); (ko_ln, a2)|])
|
|
|
|
|
(Sh.star
|
|
|
|
|
(Sh.seg {loc= k; bas= b; len= m; siz= l_k; arr= a0})
|
|
|
|
|
(Sh.star
|
|
|
|
|
(Sh.seg {loc= ln; bas= b; len= m; siz= ko_ln; arr= a2})
|
|
|
|
|
(Sh.rem_seg msg min)))
|
|
|
|
|
in
|
|
|
|
|
let sub =
|
|
|
|
|
Sh.and_ (Term.eq b b')
|
|
|
|
|
(Sh.and_ (Term.eq m m')
|
|
|
|
|
(Sh.and_ (Term.eq a1 a') (Sh.rem_seg ssg sub)))
|
|
|
|
|
in
|
|
|
|
|
goal |> with_ ~us ~com ~min ~xs ~sub ~zs
|
|
|
|
|
|
|
|
|
|
(* [k; o)
|
|
|
|
|
* ⊢ [l; n)
|
|
|
|
|
*
|
|
|
|
|
* _ ⊢ k<l * l<k+o * k+o<l+n
|
|
|
|
|
*
|
|
|
|
|
* ∀us,α₀,α₁.
|
|
|
|
|
* C * l-[b;m)->⟨k+o-l,α₁⟩
|
|
|
|
|
* ❮ ⟨o,α⟩=⟨l-k,α₀⟩^⟨k+o-l,α₁⟩ * k-[b;m)->⟨l-k,α₀⟩ * M
|
|
|
|
|
* ⊢ ∃xs,α₂'.
|
|
|
|
|
* b=b' * m=m' * ⟨k+o-l,α₁⟩^⟨l+n-(k+o),α₂'⟩=⟨n,α'⟩
|
|
|
|
|
* * k+o-[b';m')->⟨l+n-(k+o),α₂'⟩ * S ❯ R
|
|
|
|
|
* --------------------------------------------------------------------------
|
|
|
|
|
* ∀us. C ❮ k-[b;m)->⟨o,α⟩ * M ⊢ ∃xs. l-[b';m')->⟨n,α'⟩ * S ❯ ∃α₀,α₁,α₂'. R
|
|
|
|
|
*)
|
|
|
|
|
let excise_seg_min_skew ({us; com; min; xs; sub; zs} as goal) msg ssg l_k
|
|
|
|
|
ko_l ln_ko =
|
|
|
|
|
excise (fun {pf} ->
|
|
|
|
|
pf "@[<hv 2>excise_seg_min_skew@ %a@ \\- %a@]"
|
|
|
|
|
(Sh.pp_seg_norm sub.cong) msg (Sh.pp_seg_norm sub.cong) ssg ) ;
|
|
|
|
|
let {Sh.loc= k; bas= b; len= m; siz= o; arr= a} = msg in
|
|
|
|
|
let {Sh.loc= l; bas= b'; len= m'; siz= n; arr= a'} = ssg in
|
|
|
|
|
let l_k = Term.integer l_k in
|
|
|
|
|
let ko_l = Term.integer ko_l in
|
|
|
|
|
let ln_ko = Term.integer ln_ko in
|
|
|
|
|
let ko = Term.add k o in
|
|
|
|
|
let a0, us, zs, wrt = fresh_var "a0" us zs ~wrt:(Set.union us xs) in
|
|
|
|
|
let a1, us, zs, wrt = fresh_var "a1" us zs ~wrt in
|
|
|
|
|
let a2', xs, zs, _ = fresh_var "a2" xs zs ~wrt in
|
|
|
|
|
let xs = Set.diff xs (Term.fv l) in
|
|
|
|
|
let com =
|
|
|
|
|
Sh.star (Sh.seg {loc= l; bas= b; len= m; siz= ko_l; arr= a1}) com
|
|
|
|
|
in
|
|
|
|
|
let min =
|
|
|
|
|
Sh.and_
|
|
|
|
|
(Term.eq_concat (o, a) [|(l_k, a0); (ko_l, a1)|])
|
|
|
|
|
(Sh.star
|
|
|
|
|
(Sh.seg {loc= k; bas= b; len= m; siz= l_k; arr= a0})
|
|
|
|
|
(Sh.rem_seg msg min))
|
|
|
|
|
in
|
|
|
|
|
let sub =
|
|
|
|
|
Sh.and_ (Term.eq b b')
|
|
|
|
|
(Sh.and_ (Term.eq m m')
|
|
|
|
|
(Sh.and_
|
|
|
|
|
(Term.eq_concat (n, a') [|(ko_l, a1); (ln_ko, a2')|])
|
|
|
|
|
(Sh.star
|
|
|
|
|
(Sh.seg {loc= ko; bas= b'; len= m'; siz= ln_ko; arr= a2'})
|
|
|
|
|
(Sh.rem_seg ssg sub))))
|
|
|
|
|
in
|
|
|
|
|
goal |> with_ ~us ~com ~min ~xs ~sub ~zs
|
|
|
|
|
|
|
|
|
|
(* [k; o)
|
|
|
|
|
* ⊢ [l; n)
|
|
|
|
|
*
|
|
|
|
|
* _ ⊢ k>l * k+o=l+n
|
|
|
|
|
*
|
|
|
|
|
* ∀us.
|
|
|
|
|
* C * k-[b;m)->⟨o,α⟩
|
|
|
|
|
* ❮ M
|
|
|
|
|
* ⊢ ∃xs,α₀'.
|
|
|
|
|
* b=b' * m=m' * ⟨k-l,α₀'⟩^⟨o,α⟩=⟨n,α'⟩
|
|
|
|
|
* * l-[b';m')->⟨k-l,α₀'⟩ * S ❯ R
|
|
|
|
|
* --------------------------------------------------------------------
|
|
|
|
|
* ∀us. C ❮ k-[b;m)->⟨o,α⟩ * M ⊢ ∃xs. l-[b';m')->⟨n,α'⟩ * S ❯ ∃α₀'. R
|
|
|
|
|
*)
|
|
|
|
|
let excise_seg_min_suffix ({us; com; min; xs; sub; zs} as goal) msg ssg k_l
|
|
|
|
|
=
|
|
|
|
|
excise (fun {pf} ->
|
|
|
|
|
pf "@[<hv 2>excise_seg_min_suffix@ %a@ \\- %a@]"
|
|
|
|
|
(Sh.pp_seg_norm sub.cong) msg (Sh.pp_seg_norm sub.cong) ssg ) ;
|
|
|
|
|
let {Sh.bas= b; len= m; siz= o; arr= a} = msg in
|
|
|
|
|
let {Sh.loc= l; bas= b'; len= m'; siz= n; arr= a'} = ssg in
|
|
|
|
|
let k_l = Term.integer k_l in
|
|
|
|
|
let a0', xs, zs, _ = fresh_var "a0" xs zs ~wrt:(Set.union us xs) in
|
|
|
|
|
let com = Sh.star (Sh.seg msg) com in
|
|
|
|
|
let min = Sh.rem_seg msg min in
|
|
|
|
|
let sub =
|
|
|
|
|
Sh.and_ (Term.eq b b')
|
|
|
|
|
(Sh.and_ (Term.eq m m')
|
|
|
|
|
(Sh.and_
|
|
|
|
|
(Term.eq_concat (n, a') [|(k_l, a0'); (o, a)|])
|
|
|
|
|
(Sh.star
|
|
|
|
|
(Sh.seg {loc= l; bas= b'; len= m'; siz= k_l; arr= a0'})
|
|
|
|
|
(Sh.rem_seg ssg sub))))
|
|
|
|
|
in
|
|
|
|
|
goal |> with_ ~com ~min ~xs ~sub ~zs
|
|
|
|
|
|
|
|
|
|
(* [k; o)
|
|
|
|
|
* ⊢ [l; n)
|
|
|
|
|
*
|
|
|
|
|
* _ ⊢ k>l * k+o<l+n
|
|
|
|
|
*
|
|
|
|
|
* ∀us.
|
|
|
|
|
* C * k-[b;m)->⟨o,α⟩
|
|
|
|
|
* ❮ M
|
|
|
|
|
* ⊢ ∃xs,α₀',α₂'.
|
|
|
|
|
* b=b' * m=m' * ⟨k-l,α₀'⟩^⟨o,α⟩^⟨l+n-(k+o),α₂'⟩=⟨n,α'⟩
|
|
|
|
|
* * l-[b';m')->⟨k-l,α₀'⟩
|
|
|
|
|
* * k+o-[b';m')->⟨l+n-(k+o),α₂'⟩ * S ❯ R
|
|
|
|
|
* ------------------------------------------------------------------------
|
|
|
|
|
* ∀us. C ❮ k-[b;m)->⟨o,α⟩ * M ⊢ ∃xs. l-[b';m')->⟨n,α'⟩ * S ❯ ∃α₀',α₂'. R
|
|
|
|
|
*)
|
|
|
|
|
let excise_seg_min_infix ({us; com; min; xs; sub; zs} as goal) msg ssg k_l
|
|
|
|
|
ln_ko =
|
|
|
|
|
excise (fun {pf} ->
|
|
|
|
|
pf "@[<hv 2>excise_seg_min_infix@ %a@ \\- %a@]"
|
|
|
|
|
(Sh.pp_seg_norm sub.cong) msg (Sh.pp_seg_norm sub.cong) ssg ) ;
|
|
|
|
|
let {Sh.loc= k; bas= b; len= m; siz= o; arr= a} = msg in
|
|
|
|
|
let {Sh.loc= l; bas= b'; len= m'; siz= n; arr= a'} = ssg in
|
|
|
|
|
let k_l = Term.integer k_l in
|
|
|
|
|
let ln_ko = Term.integer ln_ko in
|
|
|
|
|
let ko = Term.add k o in
|
|
|
|
|
let a0', xs, zs, wrt = fresh_var "a0" xs zs ~wrt:(Set.union us xs) in
|
|
|
|
|
let a2', xs, zs, _ = fresh_var "a2" xs zs ~wrt in
|
|
|
|
|
let com = Sh.star (Sh.seg msg) com in
|
|
|
|
|
let min = Sh.rem_seg msg min in
|
|
|
|
|
let sub =
|
|
|
|
|
Sh.and_ (Term.eq b b')
|
|
|
|
|
(Sh.and_ (Term.eq m m')
|
|
|
|
|
(Sh.and_
|
|
|
|
|
(Term.eq_concat (n, a') [|(k_l, a0'); (o, a); (ln_ko, a2')|])
|
|
|
|
|
(Sh.star
|
|
|
|
|
(Sh.seg {loc= l; bas= b'; len= m'; siz= k_l; arr= a0'})
|
|
|
|
|
(Sh.star
|
|
|
|
|
(Sh.seg {loc= ko; bas= b'; len= m'; siz= ln_ko; arr= a2'})
|
|
|
|
|
(Sh.rem_seg ssg sub)))))
|
|
|
|
|
in
|
|
|
|
|
goal |> with_ ~com ~min ~xs ~sub ~zs
|
|
|
|
|
|
|
|
|
|
(* [k; o)
|
|
|
|
|
* ⊢ [l; n)
|
|
|
|
|
*
|
|
|
|
|
* _ ⊢ l<k * k<l+n * l+n<k+o
|
|
|
|
|
*
|
|
|
|
|
* ∀us,α₁,α₂.
|
|
|
|
|
* C * k-[b;m)->⟨l+n-k,α₁⟩
|
|
|
|
|
* ❮ ⟨o,α⟩=⟨l+n-k,α₁⟩^⟨k+o-(l+n),α₂⟩ * l+n-[b;m)->⟨k+o-(l+n),α₂⟩ * M
|
|
|
|
|
* ⊢ ∃xs,α₀'.
|
|
|
|
|
* b=b' * m=m' * ⟨k-l,α₀'⟩^⟨l+n-k,α₁⟩=⟨n,α'⟩
|
|
|
|
|
* * l-[b';m')->⟨k-l,α₀'⟩ * S ❯ R
|
|
|
|
|
* --------------------------------------------------------------------------
|
|
|
|
|
* ∀us. C ❮ k-[b;m)->⟨o,α⟩ * M ⊢ ∃xs. l-[b';m')->⟨n,α'⟩ * S ❯ ∃α₀',α₁,α₂. R
|
|
|
|
|
*)
|
|
|
|
|
let excise_seg_sub_skew ({us; com; min; xs; sub; zs} as goal) msg ssg k_l
|
|
|
|
|
ln_k ko_ln =
|
|
|
|
|
excise (fun {pf} ->
|
|
|
|
|
pf "@[<hv 2>excise_seg_sub_skew@ %a@ \\- %a@]"
|
|
|
|
|
(Sh.pp_seg_norm sub.cong) msg (Sh.pp_seg_norm sub.cong) ssg ) ;
|
|
|
|
|
let {Sh.loc= k; bas= b; len= m; siz= o; arr= a} = msg in
|
|
|
|
|
let {Sh.loc= l; bas= b'; len= m'; siz= n; arr= a'} = ssg in
|
|
|
|
|
let k_l = Term.integer k_l in
|
|
|
|
|
let ln_k = Term.integer ln_k in
|
|
|
|
|
let ko_ln = Term.integer ko_ln in
|
|
|
|
|
let ln = Term.add l n in
|
|
|
|
|
let a0', xs, zs, wrt = fresh_var "a0" xs zs ~wrt:(Set.union us xs) in
|
|
|
|
|
let a1, us, zs, wrt = fresh_var "a1" us zs ~wrt in
|
|
|
|
|
let a2, us, zs, _ = fresh_var "a2" us zs ~wrt in
|
|
|
|
|
let com =
|
|
|
|
|
Sh.star (Sh.seg {loc= k; bas= b; len= m; siz= ln_k; arr= a1}) com
|
|
|
|
|
in
|
|
|
|
|
let min =
|
|
|
|
|
Sh.and_
|
|
|
|
|
(Term.eq_concat (o, a) [|(ln_k, a1); (ko_ln, a2)|])
|
|
|
|
|
(Sh.star
|
|
|
|
|
(Sh.seg {loc= ln; bas= b; len= m; siz= ko_ln; arr= a2})
|
|
|
|
|
(Sh.rem_seg msg min))
|
|
|
|
|
in
|
|
|
|
|
let sub =
|
|
|
|
|
Sh.and_ (Term.eq b b')
|
|
|
|
|
(Sh.and_ (Term.eq m m')
|
|
|
|
|
(Sh.and_
|
|
|
|
|
(Term.eq_concat (n, a') [|(k_l, a0'); (ln_k, a1)|])
|
|
|
|
|
(Sh.star
|
|
|
|
|
(Sh.seg {loc= l; bas= b'; len= m'; siz= k_l; arr= a0'})
|
|
|
|
|
(Sh.rem_seg ssg sub))))
|
|
|
|
|
in
|
|
|
|
|
goal |> with_ ~us ~com ~min ~xs ~sub ~zs
|
|
|
|
|
|
|
|
|
|
(* C ❮ k-[b;m)->⟨o,α⟩ * M ⊢ ∃xs. l-[b';m')->⟨n,α'⟩ * S ❯ R *)
|
|
|
|
|
let excise_seg ({sub} as goal) msg ssg =
|
|
|
|
|
trace (fun {pf} ->
|
|
|
|
|
pf "@[<2>excise_seg@ %a@ |- %a@]" (Sh.pp_seg_norm sub.cong) msg
|
|
|
|
|
(Sh.pp_seg_norm sub.cong) ssg ) ;
|
|
|
|
|
let {Sh.loc= k; bas= b; len= m; siz= o} = msg in
|
|
|
|
|
let {Sh.loc= l; bas= b'; len= m'; siz= n} = ssg in
|
|
|
|
|
let* k_l = Equality.difference sub.cong k l in
|
|
|
|
|
if
|
|
|
|
|
(not (Equality.entails_eq sub.cong b b'))
|
|
|
|
|
|| not (Equality.entails_eq sub.cong m m')
|
|
|
|
|
then
|
|
|
|
|
Some
|
|
|
|
|
( goal
|
|
|
|
|
|> with_
|
|
|
|
|
~sub:(Sh.and_ (Term.eq b b') (Sh.and_ (Term.eq m m') goal.sub))
|
|
|
|
|
)
|
|
|
|
|
else
|
|
|
|
|
match Int.sign (Z.sign k_l) with
|
|
|
|
|
(* k-l < 0 so k < l *)
|
|
|
|
|
| Neg -> (
|
|
|
|
|
let ko = Term.add k o in
|
|
|
|
|
let ln = Term.add l n in
|
|
|
|
|
let* ko_ln = Equality.difference sub.cong ko ln in
|
|
|
|
|
match Int.sign (Z.sign ko_ln) with
|
|
|
|
|
(* k+o-(l+n) < 0 so k+o < l+n *)
|
|
|
|
|
| Neg -> (
|
|
|
|
|
let* l_ko = Equality.difference sub.cong l ko in
|
|
|
|
|
match Int.sign (Z.sign l_ko) with
|
|
|
|
|
(* l-(k+o) < 0 [k; o)
|
|
|
|
|
* so l < k+o ⊢ [l; n) *)
|
|
|
|
|
| Neg ->
|
|
|
|
|
Some
|
|
|
|
|
(excise_seg_min_skew goal msg ssg (Z.neg k_l) (Z.neg l_ko)
|
|
|
|
|
(Z.neg ko_ln))
|
|
|
|
|
| Zero | Pos -> None )
|
|
|
|
|
(* k+o-(l+n) = 0 [k; o)
|
|
|
|
|
* so k+o = l+n ⊢ [l; n) *)
|
|
|
|
|
| Zero -> Some (excise_seg_sub_suffix goal msg ssg (Z.neg k_l))
|
|
|
|
|
(* k+o-(l+n) > 0 [k; o)
|
|
|
|
|
* so k+o > l+n ⊢ [l; n) *)
|
|
|
|
|
| Pos -> Some (excise_seg_sub_infix goal msg ssg (Z.neg k_l) ko_ln)
|
|
|
|
|
)
|
|
|
|
|
(* k-l = 0 so k = l *)
|
|
|
|
|
| Zero -> (
|
|
|
|
|
let* o_n = Equality.difference sub.cong o n in
|
|
|
|
|
match Int.sign (Z.sign o_n) with
|
|
|
|
|
(* o-n < 0 [k; o)
|
|
|
|
|
* so o < n ⊢ [l; n) *)
|
|
|
|
|
| Neg -> Some (excise_seg_min_prefix goal msg ssg (Z.neg o_n))
|
|
|
|
|
(* o-n = 0 [k; o)
|
|
|
|
|
* so o = n ⊢ [l; n) *)
|
|
|
|
|
| Zero -> Some (excise_seg_same goal msg ssg)
|
|
|
|
|
(* o-n > 0 [k; o)
|
|
|
|
|
* so o > n ⊢ [l; n) *)
|
|
|
|
|
| Pos -> Some (excise_seg_sub_prefix goal msg ssg o_n) )
|
|
|
|
|
(* k-l > 0 so k > l *)
|
|
|
|
|
| Pos -> (
|
|
|
|
|
let ko = Term.add k o in
|
|
|
|
|
let ln = Term.add l n in
|
|
|
|
|
let* ko_ln = Equality.difference sub.cong ko ln in
|
|
|
|
|
match Int.sign (Z.sign ko_ln) with
|
|
|
|
|
(* k+o-(l+n) < 0 [k; o)
|
|
|
|
|
* so k+o < l+n ⊢ [l; n) *)
|
|
|
|
|
| Neg -> Some (excise_seg_min_infix goal msg ssg k_l (Z.neg ko_ln))
|
|
|
|
|
(* k+o-(l+n) = 0 [k; o)
|
|
|
|
|
* so k+o = l+n ⊢ [l; n) *)
|
|
|
|
|
| Zero -> Some (excise_seg_min_suffix goal msg ssg k_l)
|
|
|
|
|
(* k+o-(l+n) > 0 so k+o > l+n *)
|
|
|
|
|
| Pos -> (
|
|
|
|
|
let* k_ln = Equality.difference sub.cong k ln in
|
|
|
|
|
match Int.sign (Z.sign k_ln) with
|
|
|
|
|
(* k-(l+n) < 0 [k; o)
|
|
|
|
|
* so k < l+n ⊢ [l; n) *)
|
|
|
|
|
| Neg ->
|
|
|
|
|
Some
|
|
|
|
|
(excise_seg_sub_skew goal msg ssg k_l (Z.neg k_ln) ko_ln)
|
|
|
|
|
| Zero | Pos -> None ) )
|
|
|
|
|
|
|
|
|
|
let excise_heap ({min; sub} as goal) =
|
|
|
|
|
trace (fun {pf} -> pf "@[<2>excise_heap@ %a@]" pp goal) ;
|
|
|
|
|
match
|
|
|
|
|
List.find_map sub.heap ~f:(fun ssg ->
|
|
|
|
|
List.find_map min.heap ~f:(fun msg -> excise_seg goal msg ssg) )
|
|
|
|
|
with
|
|
|
|
|
| Some goal -> Some (goal |> with_ ~pgs:true)
|
|
|
|
|
| None -> Some goal
|
|
|
|
|
|
|
|
|
|
let rec excise ({min; xs; sub; zs; pgs} as goal) =
|
|
|
|
|
[%Trace.info "@[<2>excise@ %a@]" pp goal] ;
|
|
|
|
|
if Sh.is_false min then Some (Sh.false_ (Set.diff sub.us zs))
|
|
|
|
|
else if Sh.is_emp sub then Some (Sh.exists zs (Sh.extend_us xs min))
|
|
|
|
|
else if Sh.is_false sub then None
|
|
|
|
|
else if pgs then
|
|
|
|
|
goal |> with_ ~pgs:false |> excise_exists |> excise_pure >>= excise_heap
|
|
|
|
|
>>= excise
|
|
|
|
|
else None $> fun _ -> [%Trace.info "@[<2>excise fail@ %a@]" pp goal]
|
|
|
|
|
|
|
|
|
|
let excise_dnf : Sh.t -> Var.Set.t -> Sh.t -> Sh.t option =
|
|
|
|
|
fun minuend xs subtrahend ->
|
|
|
|
|
let dnf_minuend = Sh.dnf minuend in
|
|
|
|
|
let dnf_subtrahend = Sh.dnf subtrahend in
|
|
|
|
|
List.fold_option dnf_minuend
|
|
|
|
|
~init:(Sh.false_ (Set.union minuend.us xs))
|
|
|
|
|
~f:(fun remainders minuend ->
|
|
|
|
|
([%Trace.call fun {pf} -> pf "@[<2>minuend@ %a@]" Sh.pp minuend]
|
|
|
|
|
;
|
|
|
|
|
let zs, min = Sh.bind_exists minuend ~wrt:xs in
|
|
|
|
|
let us = min.us in
|
|
|
|
|
let com = Sh.emp in
|
|
|
|
|
let+ remainder =
|
|
|
|
|
List.find_map dnf_subtrahend ~f:(fun sub ->
|
|
|
|
|
[%Trace.call fun {pf} -> pf "@[<2>subtrahend@ %a@]" Sh.pp sub]
|
|
|
|
|
;
|
|
|
|
|
let sub = Sh.and_cong min.cong (Sh.extend_us us sub) in
|
|
|
|
|
excise (goal ~us ~com ~min ~xs ~sub ~zs ~pgs:true)
|
|
|
|
|
|>
|
|
|
|
|
[%Trace.retn fun {pf} -> pf "%a" (Option.pp "%a" Sh.pp)] )
|
|
|
|
|
in
|
|
|
|
|
Sh.or_ remainders remainder)
|
|
|
|
|
|>
|
|
|
|
|
[%Trace.retn fun {pf} -> pf "%a" (Option.pp "%a" Sh.pp)] )
|
|
|
|
|
|
|
|
|
|
let infer_frame : Sh.t -> Var.Set.t -> Sh.t -> Sh.t option =
|
|
|
|
|
fun minuend xs subtrahend ->
|
|
|
|
|
[%Trace.call fun {pf} ->
|
|
|
|
|
pf "@[<hv>%a@ \\- %a%a@]" Sh.pp minuend Var.Set.pp_xs xs Sh.pp
|
|
|
|
|
subtrahend]
|
|
|
|
|
;
|
|
|
|
|
assert (Set.disjoint minuend.us xs) ;
|
|
|
|
|
assert (Set.is_subset xs ~of_:subtrahend.us) ;
|
|
|
|
|
assert (Set.is_subset (Set.diff subtrahend.us xs) ~of_:minuend.us) ;
|
|
|
|
|
excise_dnf minuend xs subtrahend
|
|
|
|
|
|>
|
|
|
|
|
[%Trace.retn fun {pf} r ->
|
|
|
|
|
pf "%a" (Option.pp "%a" Sh.pp) r ;
|
|
|
|
|
Option.iter r ~f:(fun frame ->
|
|
|
|
|
let lost = Set.diff (Set.union minuend.us xs) frame.us in
|
|
|
|
|
let gain = Set.diff frame.us (Set.union minuend.us xs) in
|
|
|
|
|
assert (Set.is_empty lost || fail "lost: %a" Var.Set.pp lost ()) ;
|
|
|
|
|
assert (Set.is_empty gain || fail "gained: %a" Var.Set.pp gain ())
|
|
|
|
|
)]
|