|
|
|
|
(*
|
|
|
|
|
* Copyright (c) Facebook, Inc. and its affiliates.
|
|
|
|
|
*
|
|
|
|
|
* This source code is licensed under the MIT license found in the
|
|
|
|
|
* LICENSE file in the root directory of this source tree.
|
|
|
|
|
*)
|
|
|
|
|
|
|
|
|
|
let%test_module _ =
|
|
|
|
|
( module struct
|
|
|
|
|
open Sh
|
|
|
|
|
|
|
|
|
|
(* let () =
|
|
|
|
|
* Trace.init ~margin:160 ~config:(Result.ok_exn (Trace.parse "+Sh")) () *)
|
|
|
|
|
|
|
|
|
|
let () = Trace.init ~margin:68 ~config:Trace.none ()
|
|
|
|
|
let pp = Format.printf "@\n%a@." pp
|
|
|
|
|
let pp_raw = Format.printf "@\n%a@." pp_raw
|
|
|
|
|
let pp_djn = Format.printf "@\n%a@." pp_djn
|
|
|
|
|
let ( ~$ ) = Var.Set.of_list
|
|
|
|
|
let ( ! ) i = Term.integer (Z.of_int i)
|
|
|
|
|
let ( - ) = Term.sub
|
|
|
|
|
let ( = ) = Term.eq
|
|
|
|
|
let f = Term.unsigned 8
|
|
|
|
|
let wrt = Var.Set.empty
|
|
|
|
|
let a_, wrt = Var.fresh "a" ~wrt
|
|
|
|
|
let b_, wrt = Var.fresh "b" ~wrt
|
|
|
|
|
let c_, wrt = Var.fresh "c" ~wrt
|
|
|
|
|
let d_, wrt = Var.fresh "d" ~wrt
|
|
|
|
|
let e_, wrt = Var.fresh "e" ~wrt
|
|
|
|
|
let x_, wrt = Var.fresh "x" ~wrt
|
|
|
|
|
let y_, wrt = Var.fresh "y" ~wrt
|
|
|
|
|
let _ = wrt
|
|
|
|
|
let a = Term.var a_
|
|
|
|
|
let b = Term.var b_
|
|
|
|
|
let c = Term.var c_
|
|
|
|
|
let d = Term.var d_
|
|
|
|
|
let e = Term.var e_
|
|
|
|
|
let x = Term.var x_
|
|
|
|
|
let y = Term.var y_
|
|
|
|
|
|
|
|
|
|
let%expect_test _ =
|
|
|
|
|
let p = exists ~$[x_] (extend_us ~$[x_] emp) in
|
|
|
|
|
let q = pure (x = !0) in
|
|
|
|
|
pp p ;
|
|
|
|
|
pp q ;
|
|
|
|
|
pp (star p q) ;
|
|
|
|
|
[%expect
|
|
|
|
|
{|
|
|
|
|
|
∃ %x_6 . emp
|
|
|
|
|
|
|
|
|
|
0 = %x_6 ∧ emp
|
|
|
|
|
|
|
|
|
|
0 = %x_6 ∧ emp |}]
|
|
|
|
|
|
|
|
|
|
let%expect_test _ =
|
|
|
|
|
let q =
|
|
|
|
|
or_
|
|
|
|
|
(pure (x = !0))
|
|
|
|
|
(exists
|
|
|
|
|
~$[x_]
|
|
|
|
|
(or_
|
|
|
|
|
(and_ (x = !1) (pure (y = !1)))
|
|
|
|
|
(exists ~$[x_] (pure (x = !2)))))
|
|
|
|
|
in
|
|
|
|
|
pp q ;
|
|
|
|
|
pp_djn (dnf q) ;
|
|
|
|
|
[%expect
|
|
|
|
|
{|
|
|
|
|
|
( ( 0 = %x_6 ∧ emp)
|
|
|
|
|
∨ ( ( ( 1 = _ = %y_7 ∧ emp) ∨ ( 2 = _ ∧ emp) ))
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
( (∃ %x_6, %x_7 . 2 = %x_7 ∧ (%x_7 = 2) ∧ emp)
|
|
|
|
|
∨ (∃ %x_6 . 1 = %x_6 = %y_7 ∧ (%x_6 = 1) ∧ (%y_7 = 1) ∧ emp)
|
|
|
|
|
∨ ( 0 = %x_6 ∧ (%x_6 = 0) ∧ emp)
|
|
|
|
|
) |}]
|
|
|
|
|
|
|
|
|
|
let%expect_test _ =
|
|
|
|
|
let q =
|
|
|
|
|
exists
|
|
|
|
|
~$[x_]
|
|
|
|
|
(or_
|
|
|
|
|
(pure (x = !0))
|
|
|
|
|
(exists
|
|
|
|
|
~$[x_]
|
|
|
|
|
(or_
|
|
|
|
|
(and_ (x = !1) (pure (y = !1)))
|
|
|
|
|
(exists ~$[x_] (pure (x = !2))))))
|
|
|
|
|
in
|
|
|
|
|
pp q ;
|
|
|
|
|
pp_djn (dnf q) ;
|
|
|
|
|
[%expect
|
|
|
|
|
{|
|
|
|
|
|
( ( 0 = _ ∧ emp)
|
|
|
|
|
∨ ( ( ( 1 = _ = %y_7 ∧ emp) ∨ ( 2 = _ ∧ emp) ))
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
( (∃ %x_6, %x_8, %x_9 . 2 = %x_9 ∧ (%x_9 = 2) ∧ emp)
|
|
|
|
|
∨ (∃ %x_6, %x_8 . 1 = %y_7 = %x_8 ∧ (%y_7 = 1) ∧ (%x_8 = 1) ∧ emp)
|
|
|
|
|
∨ (∃ %x_6 . 0 = %x_6 ∧ (%x_6 = 0) ∧ emp)
|
|
|
|
|
) |}]
|
|
|
|
|
|
|
|
|
|
let%expect_test _ =
|
|
|
|
|
let q =
|
|
|
|
|
exists
|
|
|
|
|
~$[x_]
|
|
|
|
|
(or_
|
|
|
|
|
(pure (x = !0))
|
|
|
|
|
(exists
|
|
|
|
|
~$[x_]
|
|
|
|
|
(or_
|
|
|
|
|
(and_ (x = !1) (pure (y = !1)))
|
|
|
|
|
(exists ~$[x_] (pure (x = !2))))))
|
|
|
|
|
in
|
|
|
|
|
pp q ;
|
|
|
|
|
pp (simplify q) ;
|
|
|
|
|
[%expect
|
|
|
|
|
{|
|
|
|
|
|
( ( 0 = _ ∧ emp)
|
|
|
|
|
∨ ( ( ( 1 = _ = %y_7 ∧ emp) ∨ ( 2 = _ ∧ emp) ))
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
( ( 1 = %y_7 ∧ emp) ∨ ( emp) ∨ ( emp) ) |}]
|
|
|
|
|
|
|
|
|
|
let of_eqs l =
|
|
|
|
|
List.fold ~init:emp ~f:(fun q (a, b) -> and_ (Term.eq a b) q) l
|
|
|
|
|
|
|
|
|
|
let%expect_test _ =
|
|
|
|
|
let q = exists ~$[x_] (of_eqs [(f x, x); (f y, y - !1)]) in
|
|
|
|
|
pp q ;
|
|
|
|
|
let q' = simplify q in
|
|
|
|
|
pp_raw q' ;
|
|
|
|
|
pp q' ;
|
|
|
|
|
[%expect
|
|
|
|
|
{|
|
|
|
|
|
∃ %x_6 .
|
|
|
|
|
(((u8) %y_7) + 1) = %y_7
|
|
|
|
|
∧ %x_6 = ((u8) %x_6)
|
|
|
|
|
∧ ((u8) %y_7) = ((u8) (((u8) %y_7) + 1))
|
|
|
|
|
∧ emp
|
|
|
|
|
|
|
|
|
|
(((u8) %y_7) + 1) = %y_7
|
|
|
|
|
∧ ((u8) %y_7) = ((u8) (((u8) %y_7) + 1))
|
|
|
|
|
∧ ((%y_7 + -1) = ((u8) %y_7))
|
|
|
|
|
∧ emp
|
|
|
|
|
|
|
|
|
|
(((u8) %y_7) + 1) = %y_7
|
|
|
|
|
∧ ((u8) %y_7) = ((u8) (((u8) %y_7) + 1))
|
|
|
|
|
∧ emp |}]
|
|
|
|
|
|
|
|
|
|
let%expect_test _ =
|
|
|
|
|
let q =
|
|
|
|
|
exists
|
|
|
|
|
~$[a_; c_; d_; e_]
|
|
|
|
|
(star
|
|
|
|
|
(pure (Term.eq_concat (!16, e) [|(!8, a); (!8, d)|]))
|
|
|
|
|
(or_
|
|
|
|
|
(pure (Term.dq x !0))
|
|
|
|
|
(exists
|
|
|
|
|
(Var.Set.of_list [b_])
|
|
|
|
|
(pure (Term.eq_concat (!8, a) [|(!4, c); (!4, b)|])))))
|
|
|
|
|
in
|
|
|
|
|
pp_raw q ;
|
|
|
|
|
let q' = simplify q in
|
|
|
|
|
pp_raw q' ;
|
|
|
|
|
pp q' ;
|
|
|
|
|
[%expect
|
|
|
|
|
{|
|
|
|
|
|
∃ %a_1, %c_3, %d_4, %e_5 .
|
|
|
|
|
(⟨8,%a_1⟩^⟨8,%d_4⟩) = %e_5
|
|
|
|
|
∧ (⟨16,%e_5⟩ = (⟨8,%a_1⟩^⟨8,%d_4⟩))
|
|
|
|
|
∧ emp
|
|
|
|
|
* ( ( (%x_6 ≠ 0) ∧ emp)
|
|
|
|
|
∨ (∃ %b_2 .
|
|
|
|
|
(⟨4,%c_3⟩^⟨4,%b_2⟩) = %a_1
|
|
|
|
|
∧ (⟨8,%a_1⟩ = (⟨4,%c_3⟩^⟨4,%b_2⟩))
|
|
|
|
|
∧ emp)
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
( ( emp) ∨ ( (%x_6 ≠ 0) ∧ emp) )
|
|
|
|
|
|
|
|
|
|
( ( emp) ∨ ( (%x_6 ≠ 0) ∧ emp) ) |}]
|
|
|
|
|
end )
|