@ -63,33 +63,51 @@ let fold_terms_seg {loc; bas; len; siz; arr} ~init ~f =
let fold_vars_seg seg ~ init ~ f =
fold_terms_seg seg ~ init ~ f : ( fun init -> Term . fold_vars ~ f ~ init )
let fold_vars ? ignore_cong fold_vars { us = _ ; xs = _ ; cong ; pure ; heap ; djns }
let fold_vars _stem ? ignore_cong { us = _ ; xs = _ ; cong ; pure ; heap ; djns = _ }
~ init ~ f =
List . fold ~ init pure ~ f : ( fun init -> Term . fold_vars ~ f ~ init )
| > fun init ->
List . fold ~ init heap ~ f : ( fun init -> fold_vars_seg ~ f ~ init )
| > fun init ->
List . fold ~ init djns ~ f : ( fun init -> List . fold ~ init ~ f : fold_vars )
List . fold ~ init pure ~ f : ( fun init -> Term . fold_vars ~ f ~ init )
| > fun init ->
if Option . is_some ignore_cong then init
else
Equality . fold_terms ~ init cong ~ f : ( fun init -> Term . fold_vars ~ f ~ init )
let fold_vars ? ignore_cong fold_vars q ~ init ~ f =
fold_vars_stem ? ignore_cong ~ init ~ f q
| > fun init ->
List . fold ~ init q . djns ~ f : ( fun init -> List . fold ~ init ~ f : fold_vars )
(* * Pretty-printing *)
let var_strength q =
let rec var_strength_ xs m q =
let xs = Set . union xs q . xs in
fold_vars ~ ignore_cong : () ( var_strength_ xs ) q ~ init : m ~ f : ( fun m var ->
let rec var_strength_ xs m q =
let add m v =
match Map . find m v with
| None -> Map . set m ~ key : v ~ data : ` Anonymous
| Some ` Anonymous -> Map . set m ~ key : v ~ data : ` Existential
| Some _ -> m
in
let xs = Set . union xs q . xs in
let m_stem =
fold_vars_stem ~ ignore_cong : () q ~ init : m ~ f : ( fun m var ->
if not ( Set . mem xs var ) then Map . set m ~ key : var ~ data : ` Universal
else
match Map . find m var with
| None -> Map . set m ~ key : var ~ data : ` Anonymous
| Some ` Anonymous -> Map . set m ~ key : var ~ data : ` Existential
| Some _ -> m )
else add m var )
in
var_strength_ Var . Set . empty Var . Map . empty q
let m =
List . fold ~ init : m_stem q . djns ~ f : ( fun m djn ->
let ms = List . map ~ f : ( fun dj -> snd ( var_strength_ xs m dj ) ) djn in
List . reduce_balanced ms ~ f : ( fun m1 m2 ->
Map . merge_skewed m1 m2 ~ combine : ( fun ~ key : _ s1 s2 ->
match ( s1 , s2 ) with
| ` Anonymous , ` Anonymous -> ` Anonymous
| ` Universal , _ | _ , ` Universal -> ` Universal
| ` Existential , _ | _ , ` Existential -> ` Existential ) )
| > Option . value ~ default : m )
in
( m_stem , m )
let var_strength_full q = var_strength_ Var . Set . empty Var . Map . empty q
let var_strength q = snd ( var_strength_full q )
let pp_memory x fs ( siz , arr ) = Term . ppx x fs ( Term . memory ~ siz ~ arr )
let pp_seg x fs { loc ; bas ; len ; siz ; arr } =
@ -163,10 +181,10 @@ let pp_us ?(pre = ("" : _ fmt)) fs us =
if not ( Set . is_empty us ) then
[ % Trace . fprintf fs " %( %)@[%a@] .@ " pre Var . Set . pp us ]
let rec pp_ ? var_strength vs parent_ cong fs { us ; xs ; cong ; pure ; heap ; djns }
=
let rec pp_ ? var_strength vs parent_ xs parent_cong fs
{us ; xs ; cong ; pure ; heap ; djns } =
Format . pp_open_hvbox fs 0 ;
let x v = Option . bind ~ f : ( fun m -> Map . find m v ) var_strength in
let x v = Option . bind ~ f : ( fun ( _ , m ) -> Map . find m v ) var_strength in
pp_us fs us ;
let xs_d_vs , xs_i_vs =
Set . diff_inter
@ -201,33 +219,32 @@ let rec pp_ ?var_strength vs parent_cong fs {us; xs; cong; pure; heap; djns}
List . pp
~ pre : ( if first then " " else " @ * " )
" @ * "
( pp_djn ? var_strength ( Set . union vs ( Set . union us xs ) ) cong )
( pp_djn ? var_strength
( Set . union vs ( Set . union us xs ) )
( Set . union parent_xs xs ) cong )
fs djns ;
Format . pp_close_box fs ()
and pp_djn ? var_strength : parent_var_strength v s cong fs = function
and pp_djn ? var_strength vs x s cong fs = function
| [] -> Format . fprintf fs " false "
| djn ->
Format . fprintf fs " @[<hv>( %a@ )@] "
( List . pp " @ @<2>∨ " ( fun fs sjn ->
let var_strength =
let combine ~ key sjn_v m_v =
if Set . mem sjn . xs key then sjn_v else m_v
in
Option . map
~ f : ( Map . merge_skewed ~ combine ( var_strength sjn ) )
parent_var_strength
let + var_strength_stem , _ = var_strength in
var_strength_ xs var_strength_stem sjn
in
Format . fprintf fs " @[<hv 1>(%a)@] "
( pp_ ? var_strength vs cong )
( pp_ ? var_strength vs ( Set . union xs sjn . xs ) cong )
{ sjn with us = Set . diff sjn . us vs } ) )
djn
let pp_diff_eq cong fs q =
pp_ ~ var_strength : ( var_strength q ) Var . Set . empty cong fs q
pp_ ~ var_strength : ( var_strength_full q ) Var . Set . empty Var . Set . empty cong
fs q
let pp fs q = pp_diff_eq Equality . true_ fs q
let pp_djn fs d = pp_djn Var . Set . empty Equality. true_ fs d
let pp_djn fs d = pp_djn Var . Set . empty Var. Set . empty Equality. true_ fs d
let fv_seg seg = fold_vars_seg seg ~ f : Set . add ~ init : Var . Set . empty
let fv ? ignore_cong q =