You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

617 lines
20 KiB

(*
* Copyright (c) 2016-present, Programming Research Laboratory (ROPAS)
* Seoul National University, Korea
* Copyright (c) 2017-present, Facebook, Inc.
*
* This source code is licensed under the MIT license found in the
* LICENSE file in the root directory of this source tree.
*)
open! IStd
open AbsLoc
open! AbstractDomain.Types
open BufferOverrunDomain
let eval_const : Const.t -> Val.t = function
| Const.Cint intlit ->
Val.of_big_int (IntLit.to_big_int intlit)
| Const.Cfloat f ->
f |> int_of_float |> Val.of_int
| _ ->
Val.Itv.top
let rec must_alias : Exp.t -> Exp.t -> Mem.astate -> bool =
fun e1 e2 m ->
match (e1, e2) with
| Exp.Var x1, Exp.Var x2 -> (
match (Mem.find_alias x1 m, Mem.find_alias x2 m) with
| Some x1', Some x2' ->
AliasTarget.equal x1' x2'
| _, _ ->
false )
| Exp.UnOp (uop1, e1', _), Exp.UnOp (uop2, e2', _) ->
Unop.equal uop1 uop2 && must_alias e1' e2' m
| Exp.BinOp (bop1, e11, e12), Exp.BinOp (bop2, e21, e22) ->
Binop.equal bop1 bop2 && must_alias e11 e21 m && must_alias e12 e22 m
| Exp.Exn t1, Exp.Exn t2 ->
must_alias t1 t2 m
| Exp.Const c1, Exp.Const c2 ->
Const.equal c1 c2
| Exp.Cast (t1, e1'), Exp.Cast (t2, e2') ->
Typ.equal t1 t2 && must_alias e1' e2' m
| Exp.Lvar x1, Exp.Lvar x2 ->
Pvar.equal x1 x2
| Exp.Lfield (e1, fld1, _), Exp.Lfield (e2, fld2, _) ->
must_alias e1 e2 m && Typ.Fieldname.equal fld1 fld2
| Exp.Lindex (e11, e12), Exp.Lindex (e21, e22) ->
must_alias e11 e21 m && must_alias e12 e22 m
| Exp.Sizeof {nbytes= Some nbytes1}, Exp.Sizeof {nbytes= Some nbytes2} ->
Int.equal nbytes1 nbytes2
| ( Exp.Sizeof {typ= t1; dynamic_length= dynlen1; subtype= subt1}
, Exp.Sizeof {typ= t2; dynamic_length= dynlen2; subtype= subt2} ) ->
Typ.equal t1 t2 && must_alias_opt dynlen1 dynlen2 m
&& Int.equal (Subtype.compare subt1 subt2) 0
| _, _ ->
false
and must_alias_opt : Exp.t option -> Exp.t option -> Mem.astate -> bool =
fun e1_opt e2_opt m ->
match (e1_opt, e2_opt) with
| Some e1, Some e2 ->
must_alias e1 e2 m
| None, None ->
true
| _, _ ->
false
let comp_rev : Binop.t -> Binop.t = function
| Binop.Lt ->
Binop.Gt
| Binop.Gt ->
Binop.Lt
| Binop.Le ->
Binop.Ge
| Binop.Ge ->
Binop.Le
| Binop.Eq ->
Binop.Eq
| Binop.Ne ->
Binop.Ne
| _ ->
assert false
let comp_not : Binop.t -> Binop.t = function
| Binop.Lt ->
Binop.Ge
| Binop.Gt ->
Binop.Le
| Binop.Le ->
Binop.Gt
| Binop.Ge ->
Binop.Lt
| Binop.Eq ->
Binop.Ne
| Binop.Ne ->
Binop.Eq
| _ ->
assert false
let rec must_alias_cmp : Exp.t -> Mem.astate -> bool =
fun e m ->
match e with
| Exp.BinOp (Binop.Lt, e1, e2) | Exp.BinOp (Binop.Gt, e1, e2) | Exp.BinOp (Binop.Ne, e1, e2) ->
must_alias e1 e2 m
| Exp.BinOp (Binop.LAnd, e1, e2) ->
must_alias_cmp e1 m || must_alias_cmp e2 m
| Exp.BinOp (Binop.LOr, e1, e2) ->
must_alias_cmp e1 m && must_alias_cmp e2 m
| Exp.UnOp (Unop.LNot, Exp.UnOp (Unop.LNot, e1, _), _) ->
must_alias_cmp e1 m
| Exp.UnOp (Unop.LNot, Exp.BinOp ((Binop.Lt as c), e1, e2), _)
| Exp.UnOp (Unop.LNot, Exp.BinOp ((Binop.Gt as c), e1, e2), _)
| Exp.UnOp (Unop.LNot, Exp.BinOp ((Binop.Le as c), e1, e2), _)
| Exp.UnOp (Unop.LNot, Exp.BinOp ((Binop.Ge as c), e1, e2), _)
| Exp.UnOp (Unop.LNot, Exp.BinOp ((Binop.Eq as c), e1, e2), _)
| Exp.UnOp (Unop.LNot, Exp.BinOp ((Binop.Ne as c), e1, e2), _) ->
must_alias_cmp (Exp.BinOp (comp_not c, e1, e2)) m
| Exp.UnOp (Unop.LNot, Exp.BinOp (Binop.LOr, e1, e2), t) ->
let e1' = Exp.UnOp (Unop.LNot, e1, t) in
let e2' = Exp.UnOp (Unop.LNot, e2, t) in
must_alias_cmp (Exp.BinOp (Binop.LAnd, e1', e2')) m
| Exp.UnOp (Unop.LNot, Exp.BinOp (Binop.LAnd, e1, e2), t) ->
let e1' = Exp.UnOp (Unop.LNot, e1, t) in
let e2' = Exp.UnOp (Unop.LNot, e2, t) in
must_alias_cmp (Exp.BinOp (Binop.LOr, e1', e2')) m
| _ ->
false
let rec eval : Exp.t -> Mem.astate -> Val.t =
fun exp mem ->
if must_alias_cmp exp mem then Val.of_int 0
else
match exp with
| Exp.Var id ->
Mem.find_stack (Var.of_id id |> Loc.of_var) mem
| Exp.Lvar pvar ->
let ploc = Loc.of_pvar pvar in
if Mem.is_stack_loc ploc mem then Mem.find ploc mem else Val.of_loc ploc
| Exp.UnOp (uop, e, _) ->
eval_unop uop e mem
| Exp.BinOp (bop, e1, e2) ->
eval_binop bop e1 e2 mem
| Exp.Const c ->
eval_const c
| Exp.Cast (_, e) ->
eval e mem
| Exp.Lfield (e, fn, _) ->
eval e mem |> Val.get_all_locs |> PowLoc.append_field ~fn |> Val.of_pow_loc
| Exp.Lindex (e1, e2) ->
eval_lindex e1 e2 mem
| Exp.Sizeof {nbytes= Some size} ->
Val.of_int size
| Exp.Sizeof {nbytes= None} ->
Val.Itv.nat
| Exp.Exn _ | Exp.Closure _ ->
Val.Itv.top
(* NOTE: multidimensional array is not supported yet *)
and eval_lindex array_exp index_exp mem =
let array_v, index_v = (eval array_exp mem, eval index_exp mem) in
let arr = Val.plus_pi array_v index_v in
if ArrayBlk.is_bot (Val.get_array_blk arr) then
match array_exp with
| Exp.Lfield _ when not (PowLoc.is_bot (Val.get_pow_loc array_v)) ->
(* It handles the case accessing an array field of struct,
e.g., x.f[n] . Since our abstract domain distinguishes
memory sections for each array fields in struct, it finds
the memory section using the abstract memory, though the
memory lookup is not required to evaluate the address of
x.f[n] in the concrete semantics. *)
Val.plus_pi (Mem.find_set (Val.get_pow_loc array_v) mem) index_v
| _ ->
Val.of_pow_loc PowLoc.unknown
else arr
and eval_unop : Unop.t -> Exp.t -> Mem.astate -> Val.t =
fun unop e mem ->
let v = eval e mem in
match unop with
| Unop.Neg ->
Val.neg v
| Unop.BNot ->
Val.unknown_bit v
| Unop.LNot ->
Val.lnot v
and eval_binop : Binop.t -> Exp.t -> Exp.t -> Mem.astate -> Val.t =
fun binop e1 e2 mem ->
let v1 = eval e1 mem in
let v2 = eval e2 mem in
match binop with
| Binop.PlusA _ ->
Val.plus_a v1 v2
| Binop.PlusPI ->
Val.plus_pi v1 v2
| Binop.MinusA _ ->
Val.minus_a v1 v2
| Binop.MinusPI ->
Val.minus_pi v1 v2
| Binop.MinusPP ->
Val.minus_pp v1 v2
| Binop.Mult _ ->
Val.mult v1 v2
| Binop.Div ->
Val.div v1 v2
| Binop.Mod ->
Val.mod_sem v1 v2
| Binop.Shiftlt ->
Val.shiftlt v1 v2
| Binop.Shiftrt ->
Val.shiftrt v1 v2
| Binop.Lt ->
Val.lt_sem v1 v2
| Binop.Gt ->
Val.gt_sem v1 v2
| Binop.Le ->
Val.le_sem v1 v2
| Binop.Ge ->
Val.ge_sem v1 v2
| Binop.Eq ->
Val.eq_sem v1 v2
| Binop.Ne ->
Val.ne_sem v1 v2
| Binop.BAnd ->
Val.band_sem v1 v2
| Binop.BXor | Binop.BOr ->
Val.unknown_bit v1
| Binop.LAnd ->
Val.land_sem v1 v2
| Binop.LOr ->
Val.lor_sem v1 v2
(* It returns the array value of the input expression. For example,
when "x" is a program variable, (eval_arr "x") returns array blocks
the "x" is pointing to, on the other hand, (eval "x") returns the
abstract location of "x". *)
let rec eval_arr : Exp.t -> Mem.astate -> Val.t =
fun exp mem ->
match exp with
| Exp.Var id -> (
match Mem.find_alias id mem with
| Some (AliasTarget.Simple loc) ->
Mem.find loc mem
| Some (AliasTarget.Empty _) | None ->
Val.bot )
| Exp.Lvar pvar ->
Mem.find_set (PowLoc.singleton (Loc.of_pvar pvar)) mem
| Exp.BinOp (bop, e1, e2) ->
eval_binop bop e1 e2 mem
| Exp.Cast (_, e) ->
eval_arr e mem
| Exp.Lfield (e, fn, _) ->
let locs = eval e mem |> Val.get_all_locs |> PowLoc.append_field ~fn in
Mem.find_set locs mem
| Exp.Lindex (e1, e2) ->
let arr = eval e1 mem in
let idx = eval e2 mem in
Val.plus_pi arr idx
| Exp.Const _ | Exp.UnOp _ | Exp.Sizeof _ | Exp.Exn _ | Exp.Closure _ ->
Val.bot
let get_formals : Procdesc.t -> (Pvar.t * Typ.t) list =
fun pdesc ->
let proc_name = Procdesc.get_proc_name pdesc in
Procdesc.get_formals pdesc |> List.map ~f:(fun (name, typ) -> (Pvar.mk name proc_name, typ))
module ParamBindings = struct
include PrettyPrintable.MakePPMap (struct
include Pvar
let pp = pp Pp.text
end)
let make formals actuals =
let rec add_binding formals actuals acc =
match (formals, actuals) with
| (formal, _) :: formals', actual :: actuals' ->
add_binding formals' actuals' (add formal actual acc)
| _, _ ->
acc
in
add_binding formals actuals empty
end
let rec eval_sympath_partial params p mem =
match p with
| Symb.SymbolPath.Pvar x -> (
try ParamBindings.find x params with Caml.Not_found ->
L.(debug BufferOverrun Verbose)
"Symbol %a is not found in parameters.@\n" (Pvar.pp Pp.text) x ;
Val.Itv.top )
| Symb.SymbolPath.Index _ | Symb.SymbolPath.Field _ ->
let locs = eval_locpath params p mem in
Mem.find_set locs mem
and eval_locpath params p mem =
match p with
| Symb.SymbolPath.Pvar _ ->
let v = eval_sympath_partial params p mem in
Val.get_all_locs v
| Symb.SymbolPath.Index p ->
let v = eval_sympath_partial params p mem in
Val.get_all_locs v
| Symb.SymbolPath.Field (fn, p) ->
let locs = eval_locpath params p mem in
PowLoc.append_field ~fn locs
let eval_sympath params sympath mem =
match sympath with
| Symb.SymbolPath.Normal p ->
let v = eval_sympath_partial params p mem in
(Val.get_itv v, Val.get_traces v)
| Symb.SymbolPath.Offset p ->
let v = eval_sympath_partial params p mem in
(ArrayBlk.offsetof (Val.get_array_blk v), Val.get_traces v)
| Symb.SymbolPath.Length p ->
let v = eval_sympath_partial params p mem in
(ArrayBlk.sizeof (Val.get_array_blk v), Val.get_traces v)
let mk_eval_sym_trace callee_pdesc actual_exps caller_mem =
let formals = get_formals callee_pdesc in
let actuals = List.map ~f:(fun (a, _) -> eval a caller_mem) actual_exps in
let params = ParamBindings.make formals actuals in
let eval_sym_traced s =
let sympath = Symb.Symbol.path s in
let itv, traces = eval_sympath params sympath caller_mem in
if Itv.eq itv Itv.bot then (Bottom, TraceSet.empty)
else
let get_bound =
match Symb.Symbol.bound_end s with
| Symb.BoundEnd.LowerBound ->
Itv.lb
| Symb.BoundEnd.UpperBound ->
Itv.ub
in
(NonBottom (get_bound itv), traces)
in
let eval_sym s = fst (eval_sym_traced s) in
let trace_of_sym s = snd (eval_sym_traced s) in
let eval_locpath partial = eval_locpath params partial caller_mem in
((eval_sym, trace_of_sym), eval_locpath)
let mk_eval_sym callee_pdesc actual_exps caller_mem =
fst (fst (mk_eval_sym_trace callee_pdesc actual_exps caller_mem))
let get_sym_f mem e = Val.get_sym (eval e mem)
let get_offset_sym_f mem e = Val.get_offset_sym (eval e mem)
let get_size_sym_f mem e = Val.get_size_sym (eval e mem)
module Prune = struct
type astate = {prune_pairs: PrunePairs.astate; mem: Mem.astate}
let update_mem_in_prune lv v {prune_pairs; mem} =
let prune_pairs = PrunePairs.add lv v prune_pairs in
let mem = Mem.update_mem (PowLoc.singleton lv) v mem in
{prune_pairs; mem}
let prune_unop : Exp.t -> astate -> astate =
fun e ({mem} as astate) ->
match e with
| Exp.Var x -> (
match Mem.find_alias x mem with
| Some (AliasTarget.Simple lv) ->
let v = Mem.find lv mem in
let v' = Val.prune_ne_zero v in
update_mem_in_prune lv v' astate
| Some (AliasTarget.Empty lv) ->
let v = Mem.find lv mem in
let v' = Val.prune_eq_zero v in
update_mem_in_prune lv v' astate
| None ->
astate )
| Exp.UnOp (Unop.LNot, Exp.Var x, _) -> (
match Mem.find_alias x mem with
| Some (AliasTarget.Simple lv) ->
let v = Mem.find lv mem in
let v' = Val.prune_eq_zero v in
update_mem_in_prune lv v' astate
| Some (AliasTarget.Empty lv) ->
let v = Mem.find lv mem in
let itv_v = Itv.prune_comp Binop.Ge (Val.get_itv v) Itv.one in
let v' = Val.modify_itv itv_v v in
update_mem_in_prune lv v' astate
| None ->
astate )
| _ ->
astate
let prune_binop_left : Exp.t -> astate -> astate =
fun e ({mem} as astate) ->
match e with
| Exp.BinOp ((Binop.Lt as comp), Exp.Var x, e')
| Exp.BinOp ((Binop.Gt as comp), Exp.Var x, e')
| Exp.BinOp ((Binop.Le as comp), Exp.Var x, e')
| Exp.BinOp ((Binop.Ge as comp), Exp.Var x, e') -> (
match Mem.find_simple_alias x mem with
| Some lv ->
let v = Mem.find lv mem in
let v' = Val.prune_comp comp v (eval e' mem) in
update_mem_in_prune lv v' astate
| None ->
astate )
| Exp.BinOp (Binop.Eq, Exp.Var x, e') -> (
match Mem.find_simple_alias x mem with
| Some lv ->
let v = Mem.find lv mem in
let v' = Val.prune_eq v (eval e' mem) in
update_mem_in_prune lv v' astate
| None ->
astate )
| Exp.BinOp (Binop.Ne, Exp.Var x, e') -> (
match Mem.find_simple_alias x mem with
| Some lv ->
let v = Mem.find lv mem in
let v' = Val.prune_ne v (eval e' mem) in
update_mem_in_prune lv v' astate
| None ->
astate )
| _ ->
astate
let prune_binop_right : Exp.t -> astate -> astate =
fun e astate ->
match e with
| Exp.BinOp ((Binop.Lt as c), e', Exp.Var x)
| Exp.BinOp ((Binop.Gt as c), e', Exp.Var x)
| Exp.BinOp ((Binop.Le as c), e', Exp.Var x)
| Exp.BinOp ((Binop.Ge as c), e', Exp.Var x)
| Exp.BinOp ((Binop.Eq as c), e', Exp.Var x)
| Exp.BinOp ((Binop.Ne as c), e', Exp.Var x) ->
prune_binop_left (Exp.BinOp (comp_rev c, Exp.Var x, e')) astate
| _ ->
astate
let is_unreachable_constant : Exp.t -> Mem.astate -> bool =
fun e m ->
let v = eval e m in
Itv.( <= ) ~lhs:(Val.get_itv v) ~rhs:(Itv.of_int 0)
&& PowLoc.is_bot (Val.get_pow_loc v)
&& ArrayBlk.is_bot (Val.get_array_blk v)
let prune_unreachable : Exp.t -> astate -> astate =
fun e ({mem} as astate) ->
if is_unreachable_constant e mem || Mem.is_relation_unsat mem then {astate with mem= Mem.bot}
else astate
let rec prune_helper e astate =
let astate =
astate |> prune_unreachable e |> prune_unop e |> prune_binop_left e |> prune_binop_right e
in
match e with
| Exp.BinOp (Binop.Ne, e, Exp.Const (Const.Cint i)) when IntLit.iszero i ->
prune_helper e astate
| Exp.BinOp (Binop.Eq, e, Exp.Const (Const.Cint i)) when IntLit.iszero i ->
prune_helper (Exp.UnOp (Unop.LNot, e, None)) astate
| Exp.UnOp (Unop.Neg, Exp.Var x, _) ->
prune_helper (Exp.Var x) astate
| Exp.BinOp (Binop.LAnd, e1, e2) ->
astate |> prune_helper e1 |> prune_helper e2
| Exp.UnOp (Unop.LNot, Exp.BinOp (Binop.LOr, e1, e2), t) ->
astate
|> prune_helper (Exp.UnOp (Unop.LNot, e1, t))
|> prune_helper (Exp.UnOp (Unop.LNot, e2, t))
| Exp.UnOp (Unop.LNot, Exp.BinOp ((Binop.Lt as c), e1, e2), _)
| Exp.UnOp (Unop.LNot, Exp.BinOp ((Binop.Gt as c), e1, e2), _)
| Exp.UnOp (Unop.LNot, Exp.BinOp ((Binop.Le as c), e1, e2), _)
| Exp.UnOp (Unop.LNot, Exp.BinOp ((Binop.Ge as c), e1, e2), _)
| Exp.UnOp (Unop.LNot, Exp.BinOp ((Binop.Eq as c), e1, e2), _)
| Exp.UnOp (Unop.LNot, Exp.BinOp ((Binop.Ne as c), e1, e2), _) ->
prune_helper (Exp.BinOp (comp_not c, e1, e2)) astate
| _ ->
astate
let prune : Exp.t -> Mem.astate -> Mem.astate =
fun e mem ->
let mem = Mem.apply_latest_prune e mem in
let mem =
let constrs = Relation.Constraints.of_exp e ~get_sym_f:(get_sym_f mem) in
Mem.meet_constraints constrs mem
in
let {mem; prune_pairs} = prune_helper e {mem; prune_pairs= PrunePairs.empty} in
Mem.set_prune_pairs prune_pairs mem
end
let get_matching_pairs :
Tenv.t
-> Val.t
-> Val.t
-> Exp.t option
-> Typ.t
-> Mem.astate
-> Mem.astate
-> (Relation.Var.t * Relation.SymExp.t option) list =
fun tenv callee_v actual actual_exp_opt typ caller_mem callee_exit_mem ->
let get_offset_sym v = Val.get_offset_sym v in
let get_size_sym v = Val.get_size_sym v in
let get_field_name (fn, _, _) = fn in
let append_field v fn = PowLoc.append_field (Val.get_all_locs v) ~fn in
let deref_field v fn mem = Mem.find_set (append_field v fn) mem in
let deref_ptr v mem =
let array_locs = Val.get_array_locs v in
let locs = if PowLoc.is_empty array_locs then Val.get_pow_loc v else array_locs in
Mem.find_set locs mem
in
let add_pair_sym_main_value v1 v2 ~e2_opt l =
Option.value_map (Val.get_sym_var v1) ~default:l ~f:(fun var ->
let sym_exp_opt =
Option.first_some
(Relation.SymExp.of_exp_opt ~get_sym_f:(get_sym_f caller_mem) e2_opt)
(Relation.SymExp.of_sym (Val.get_sym v2))
in
(var, sym_exp_opt) :: l )
in
let add_pair_sym s1 s2 l =
Option.value_map (Relation.Sym.get_var s1) ~default:l ~f:(fun var ->
(var, Relation.SymExp.of_sym s2) :: l )
in
let add_pair_val v1 v2 ~e2_opt rel_pairs =
rel_pairs
|> add_pair_sym_main_value v1 v2 ~e2_opt
|> add_pair_sym (get_offset_sym v1) (get_offset_sym v2)
|> add_pair_sym (get_size_sym v1) (get_size_sym v2)
in
let add_pair_field v1 v2 pairs fn =
let v1' = deref_field v1 fn callee_exit_mem in
let v2' = deref_field v2 fn caller_mem in
add_pair_val v1' v2' ~e2_opt:None pairs
in
let add_pair_ptr typ v1 v2 pairs =
match typ.Typ.desc with
| Typ.Tptr ({desc= Tstruct typename}, _) -> (
match Tenv.lookup tenv typename with
| Some str ->
let fns = List.map ~f:get_field_name str.Typ.Struct.fields in
List.fold ~f:(add_pair_field v1 v2) ~init:pairs fns
| _ ->
pairs )
| Typ.Tptr (_, _) ->
let v1' = deref_ptr v1 callee_exit_mem in
let v2' = deref_ptr v2 caller_mem in
add_pair_val v1' v2' ~e2_opt:None pairs
| _ ->
pairs
in
[] |> add_pair_val callee_v actual ~e2_opt:actual_exp_opt |> add_pair_ptr typ callee_v actual
let subst_map_of_rel_pairs :
(Relation.Var.t * Relation.SymExp.t option) list -> Relation.SubstMap.t =
fun pairs ->
let add_pair rel_map (x, e) = Relation.SubstMap.add x e rel_map in
List.fold pairs ~init:Relation.SubstMap.empty ~f:add_pair
let rec list_fold2_def :
default:Val.t * Exp.t option
-> f:('a -> Val.t * Exp.t option -> 'b -> 'b)
-> 'a list
-> (Val.t * Exp.t option) list
-> init:'b
-> 'b =
fun ~default ~f xs ys ~init:acc ->
match (xs, ys) with
| [], _ ->
acc
| x :: xs', [] ->
list_fold2_def ~default ~f xs' ys ~init:(f x default acc)
| [x], _ :: _ ->
let v = List.fold ys ~init:Val.bot ~f:(fun acc (y, _) -> Val.join y acc) in
let exp_opt = match ys with [(_, exp_opt)] -> exp_opt | _ -> None in
f x (v, exp_opt) acc
| x :: xs', y :: ys' ->
list_fold2_def ~default ~f xs' ys' ~init:(f x y acc)
let get_subst_map :
Tenv.t -> Procdesc.t -> (Exp.t * 'a) list -> Mem.astate -> Mem.astate -> Relation.SubstMap.t =
fun tenv callee_pdesc params caller_mem callee_exit_mem ->
let add_pair (formal, typ) (actual, actual_exp) rel_l =
let callee_v = Mem.find (Loc.of_pvar formal) callee_exit_mem in
let new_rel_matching =
get_matching_pairs tenv callee_v actual actual_exp typ caller_mem callee_exit_mem
in
List.rev_append new_rel_matching rel_l
in
let formals = get_formals callee_pdesc in
let actuals = List.map ~f:(fun (a, _) -> (eval a caller_mem, Some a)) params in
let rel_pairs =
list_fold2_def ~default:(Val.Itv.top, None) ~f:add_pair formals actuals ~init:[]
in
subst_map_of_rel_pairs rel_pairs