[sledge] Change symbolic execution of instructions to not rely on SSA

Summary:
Before this diff symbolic execution of instructions assumed that
assigned variables were unconstrained in the precondition. This is
ensured by symbolic execution of control flow, which renames all local
variables of a block when it is entered.

This diff changes symbolic execution of instructions to rename
modified variables that appear in the precondition when necessary, and
accounts for the modified variable occurrence condition on the frame
rule. This will enable more economically renaming variables, as most
of the time it is not needed.

Reviewed By: jvillard

Differential Revision: D16905893

fbshipit-source-id: 3a53525d7
master
Josh Berdine 5 years ago committed by Facebook Github Bot
parent 808a61623f
commit 0790a64763

@ -7,8 +7,11 @@
(** Symbolic Execution *)
(** generic command: ∀xs.{foot}-{post} *)
type spec = {xs: Var.Set.t; foot: Sh.t; post: Sh.t}
[@@@warning "+9"]
(** generic command: ∀xs. {foot ∧ sub} ms := - {post} *)
type spec =
{xs: Var.Set.t; foot: Sh.t; sub: Var.Subst.t; ms: Var.Set.t; post: Sh.t}
type xseg = {us: Var.Set.t; xs: Var.Set.t; seg: Sh.seg}
@ -29,58 +32,75 @@ let fresh_seg ~loc ?bas ?len ?siz ?arr ?(xs = Var.Set.empty) us =
let null_eq ptr = Sh.pure (Exp.eq Exp.null ptr)
let zero = Exp.integer Z.zero Typ.siz
(* Overwritten variables renaming and remaining modified variables. [ws] are
the written variables; [rs] are the variables read or in the
precondition; [us] are the variables to which ghosts must be chosen
fresh. *)
let assign ~ws ~rs ~us =
let ovs = Set.inter ws rs in
let sub = Var.Subst.freshen ovs ~wrt:us in
let us = Set.union us (Var.Subst.range sub) in
let ms = Set.diff ws (Var.Subst.domain sub) in
(sub, ms, us)
(*
* Instruction small axioms
*)
let return pre formal exp = Sh.and_ (Exp.eq (Exp.var formal) exp) pre
let assume pre cnd =
let post = Sh.and_ cnd pre in
if Sh.is_false post then None else Some post
let kill pre reg = Sh.exists (Set.add Var.Set.empty reg) pre
let return pre formal exp = Sh.and_ (Exp.eq (Exp.var formal) exp) pre
(* { p-[b;m)->⟨l,α⟩ }
* load l r p
* { r=α * p-[b;m)->l,α }
* { r=αΘ * (p-[b;m)->l,α)Θ }
*)
let load_spec us reg ptr len =
let {xs; seg} = fresh_seg ~loc:ptr ~siz:len us in
let {us; xs; seg} = fresh_seg ~loc:ptr ~siz:len us in
let foot = Sh.seg seg in
let post = Sh.and_ (Exp.eq (Exp.var reg) seg.arr) foot in
{xs; foot; post}
let sub, ms, _ = assign ~ws:(Set.add Var.Set.empty reg) ~rs:foot.us ~us in
let post =
Sh.and_
(Exp.eq (Exp.var reg) (Exp.rename sub seg.arr))
(Sh.rename sub foot)
in
{xs; foot; sub; ms; post}
(* { p-[b;m)->⟨l,α⟩ }
* store l p e
* { p-[b;m)->l,e }
*)
let store_spec us ptr exp len =
let {xs; seg} = fresh_seg ~loc:ptr ~siz:len us in
let {us= _; xs; seg} = fresh_seg ~loc:ptr ~siz:len us in
let foot = Sh.seg seg in
let post = Sh.seg {seg with arr= exp} in
{xs; foot; post}
{xs; foot; sub= Var.Subst.empty; ms= Var.Set.empty; post}
(* { d-[b;m)->⟨l,α⟩ }
* memset l d b
* { d-[b;m)->l,b^l }
*)
let memset_spec us dst byt len =
let {xs; seg} = fresh_seg ~loc:dst ~siz:len us in
let {us= _; xs; seg} = fresh_seg ~loc:dst ~siz:len us in
let foot = Sh.seg seg in
let post = Sh.seg {seg with arr= Exp.splat ~byt ~siz:len} in
{xs; foot; post}
{xs; foot; sub= Var.Subst.empty; ms= Var.Set.empty; post}
(* { d=s * l=0 * d-[b;m)->⟨l,α⟩ }
* memcpy l d s
* { d-[b;m)->l,α }
*)
let memcpy_eq_spec us dst src len =
let {xs; seg} = fresh_seg ~loc:dst ~len us in
let {us= _; xs; seg} = fresh_seg ~loc:dst ~len us in
let dst_heap = Sh.seg seg in
let foot =
Sh.and_ (Exp.eq dst src) (Sh.and_ (Exp.eq len zero) dst_heap)
in
let post = dst_heap in
{xs; foot; post}
{xs; foot; sub= Var.Subst.empty; ms= Var.Set.empty; post}
(* { d-[b;m)->⟨l,α⟩ * s-[b';m')->⟨l,α'⟩ }
* memcpy l d s
@ -89,16 +109,13 @@ let memcpy_eq_spec us dst src len =
let memcpy_dj_spec us dst src len =
let {us; xs; seg= dst_seg} = fresh_seg ~loc:dst ~siz:len us in
let dst_heap = Sh.seg dst_seg in
let {us; xs; seg= src_seg} = fresh_seg ~loc:src ~siz:len ~xs us in
let {us= _; xs; seg= src_seg} = fresh_seg ~loc:src ~siz:len ~xs us in
let src_heap = Sh.seg src_seg in
let {seg= dst_seg'} =
fresh_seg ~loc:dst ~bas:dst_seg.bas ~len:dst_seg.len ~siz:dst_seg.siz
~arr:src_seg.arr us
in
let dst_seg' = {dst_seg with arr= src_seg.arr} in
let dst_heap' = Sh.seg dst_seg' in
let foot = Sh.star dst_heap src_heap in
let post = Sh.star dst_heap' src_heap in
{xs; foot; post}
{xs; foot; sub= Var.Subst.empty; ms= Var.Set.empty; post}
let memcpy_specs us dst src len =
[memcpy_eq_spec us dst src len; memcpy_dj_spec us dst src len]
@ -108,11 +125,11 @@ let memcpy_specs us dst src len =
* { d-[b;m)->l,α }
*)
let memmov_eq_spec us dst src len =
let {xs; seg= dst_seg} = fresh_seg ~loc:dst ~len us in
let {us= _; xs; seg= dst_seg} = fresh_seg ~loc:dst ~len us in
let dst_heap = Sh.seg dst_seg in
let foot = Sh.and_ (Exp.eq dst src) dst_heap in
let post = dst_heap in
{xs; foot; post}
{xs; foot; sub= Var.Subst.empty; ms= Var.Set.empty; post}
(* { d-[b;m)->⟨l,α⟩ * s-[b';m')->⟨l,α'⟩ }
* memmov l d s
@ -175,7 +192,7 @@ let memmov_dn_spec us dst src len =
; siz= siz_mid_src_src
; arr= arr_mid_src_src })
in
{xs; foot; post}
{xs; foot; sub= Var.Subst.empty; ms= Var.Set.empty; post}
(* { s<d * d<s+l * s-[b;m)->⟨d-s,α⟩^⟨l-(d-s),β⟩^⟨d-s,γ⟩ }
* memmov l d s
@ -201,7 +218,7 @@ let memmov_up_spec us dst src len =
; siz= siz_src_src_mid
; arr= arr_src_src_mid })
in
{xs; foot; post}
{xs; foot; sub= Var.Subst.empty; ms= Var.Set.empty; post}
let memmov_specs us dst src len =
[ memmov_eq_spec us dst src len
@ -211,15 +228,19 @@ let memmov_specs us dst src len =
(* { emp }
* alloc r [n × l]
* { α'. r-[r;n×l)->n×l,α' }
* { α'. r-[r;(n×l)Θ)->(n×l)Θ,α' }
*)
let alloc_spec us reg num len =
let loc = Exp.var reg in
let foot = Sh.emp in
let siz = Exp.mul Typ.siz num len in
let {xs; seg} = fresh_seg ~loc ~bas:loc ~len:siz ~siz us in
let sub, ms, us =
assign ~ws:(Set.add Var.Set.empty reg) ~rs:(Exp.fv siz) ~us
in
let loc = Exp.var reg in
let siz = Exp.rename sub siz in
let {us= _; xs; seg} = fresh_seg ~loc ~bas:loc ~len:siz ~siz us in
let post = Sh.seg seg in
let foot = Sh.extend_us xs Sh.emp in
{xs; foot; post}
{xs; foot; sub; ms; post}
(*
* Memory management - see e.g. http://jemalloc.net/jemalloc.3.html
@ -231,10 +252,10 @@ let alloc_spec us reg num len =
*)
let free_spec us ptr =
let len, us, xs = fresh_var "m" us Var.Set.empty in
let {xs; seg} = fresh_seg ~loc:ptr ~bas:ptr ~len ~siz:len ~xs us in
let {us= _; xs; seg} = fresh_seg ~loc:ptr ~bas:ptr ~len ~siz:len ~xs us in
let foot = Sh.or_ (null_eq ptr) (Sh.seg seg) in
let post = Sh.emp in
{xs; foot; post}
{xs; foot; sub= Var.Subst.empty; ms= Var.Set.empty; post}
(* { p-[p;m)->⟨m,α⟩ }
* dallocx p
@ -242,92 +263,118 @@ let free_spec us ptr =
*)
let dallocx_spec us ptr =
let len, us, xs = fresh_var "m" us Var.Set.empty in
let {xs; seg} = fresh_seg ~loc:ptr ~bas:ptr ~len ~siz:len ~xs us in
let {us= _; xs; seg} = fresh_seg ~loc:ptr ~bas:ptr ~len ~siz:len ~xs us in
let foot = Sh.seg seg in
let post = Sh.emp in
{xs; foot; post}
{xs; foot; sub= Var.Subst.empty; ms= Var.Set.empty; post}
(* { emp }
* malloc r s
* { r=0 α'. r-[r;s)->s,α' }
* { r=0 α'. r-[r;sΘ)->sΘ,α' }
*)
let malloc_spec us reg siz =
let foot = Sh.emp in
let sub, ms, us =
assign ~ws:(Set.add Var.Set.empty reg) ~rs:(Exp.fv siz) ~us
in
let loc = Exp.var reg in
let {xs; seg} = fresh_seg ~loc ~bas:loc ~len:siz ~siz us in
let foot = Sh.extend_us xs Sh.emp in
let siz = Exp.rename sub siz in
let {us= _; xs; seg} = fresh_seg ~loc ~bas:loc ~len:siz ~siz us in
let post = Sh.or_ (null_eq (Exp.var reg)) (Sh.seg seg) in
{xs; foot; post}
{xs; foot; sub; ms; post}
(* { s≠0 }
* mallocx r s
* { r=0 α'. r-[r;s)->s,α' }
* { r=0 α'. r-[r;sΘ)->sΘ,α' }
*)
let mallocx_spec us reg siz =
let foot = Sh.pure Exp.(dq siz zero) in
let sub, ms, us =
assign ~ws:(Set.add Var.Set.empty reg) ~rs:(Exp.fv siz) ~us
in
let loc = Exp.var reg in
let {xs; seg} = fresh_seg ~loc ~bas:loc ~len:siz ~siz us in
let foot = Sh.extend_us xs (Sh.pure Exp.(dq siz zero)) in
let siz = Exp.rename sub siz in
let {us= _; xs; seg} = fresh_seg ~loc ~bas:loc ~len:siz ~siz us in
let post = Sh.or_ (null_eq (Exp.var reg)) (Sh.seg seg) in
{xs; foot; post}
{xs; foot; sub; ms; post}
(* { emp }
* calloc r [n × l]
* { r=0 r-[r;n×l)->n×l,0^n×l }
* { r=0 r-[r;(n×l)Θ)->(n×l)Θ,0^(n×l)Θ }
*)
let calloc_spec us reg num len =
let loc = Exp.var reg in
let byt = Exp.integer Z.zero Typ.byt in
let siz = Exp.mul Typ.siz num len in
let arr = Exp.splat ~byt ~siz in
let {xs; seg} = fresh_seg ~loc ~bas:loc ~len:siz ~siz ~arr us in
let foot = Sh.emp in
let siz = Exp.mul Typ.siz num len in
let sub, ms, us =
assign ~ws:(Set.add Var.Set.empty reg) ~rs:(Exp.fv siz) ~us
in
let loc = Exp.var reg in
let siz = Exp.rename sub siz in
let arr = Exp.splat ~byt:(Exp.integer Z.zero Typ.byt) ~siz in
let {us= _; xs; seg} = fresh_seg ~loc ~bas:loc ~len:siz ~siz ~arr us in
let post = Sh.or_ (null_eq (Exp.var reg)) (Sh.seg seg) in
{xs; foot; post}
{xs; foot; sub; ms; post}
let size_of_ptr = Option.value_exn (Exp.size_of Typ.ptr)
(* { p-[_;_)->⟨W,_⟩ }
* posix_memalign r p s
* { r=ENOMEM * p-[_;_)->W,_
* α',q. r=0 * p-[_;_)->W,q * q-[q;s)->s,α' }
* { r=ENOMEM * (p-[_;_)->W,_)Θ
* α',q. r=0 * (p-[_;_)->W,q * q-[q;s)->s,α')Θ }
* where W = sizeof void*
*)
let posix_memalign_spec us reg ptr siz =
let {xs; seg= pseg} = fresh_seg ~loc:ptr ~siz:size_of_ptr us in
let {us; xs; seg= pseg} = fresh_seg ~loc:ptr ~siz:size_of_ptr us in
let foot = Sh.seg pseg in
let sub, ms, us =
assign
~ws:(Set.add Var.Set.empty reg)
~rs:(Set.union foot.us (Exp.fv siz))
~us
in
let q, us, xs = fresh_var "q" us xs in
let pseg' = {pseg with arr= q} in
let {xs; seg= qseg} = fresh_seg ~loc:q ~bas:q ~len:siz ~siz ~xs us in
let foot = Sh.extend_us xs (Sh.seg pseg) in
let {us= _; xs; seg= qseg} =
fresh_seg ~loc:q ~bas:q ~len:siz ~siz ~xs us
in
let eok = Exp.integer (Z.of_int 0) Typ.int in
let enomem = Exp.integer (Z.of_int 12) Typ.int in
let post =
Sh.or_
(Sh.and_ (Exp.eq (Exp.var reg) enomem) (Sh.seg pseg))
(Sh.and_ (Exp.eq (Exp.var reg) enomem) (Sh.rename sub foot))
(Sh.and_
(Exp.eq (Exp.var reg) eok)
(Sh.star (Sh.seg pseg') (Sh.seg qseg)))
(Sh.rename sub (Sh.star (Sh.seg pseg') (Sh.seg qseg))))
in
{xs; foot; post}
{xs; foot; sub; ms; post}
(* { p=0 p-[p;m)->⟨m,α⟩ }
* realloc r p s
* { (r=0 * (p=0 p-[p;m)->m,α))
* α',α'' . r-[r;s)->s,α'
* * (ms ? s,α'=m,α^s-m,α'' : m,α=s,α'^m-s,α'') }
* { (r=0 * (pΘ=0 pΘ-[pΘ;m)->m,α))
* α',α'' . r-[r;sΘ)->sΘ,α'
* * (msΘ ? sΘ,α'=m,α^sΘ-m,α'' : m,α=sΘ,α'^m-sΘ,α'') }
*)
let realloc_spec us reg ptr siz =
let len, us, xs = fresh_var "m" us Var.Set.empty in
let {us; xs; seg= pseg} =
fresh_seg ~loc:ptr ~bas:ptr ~len ~siz:len ~xs us
in
let foot = Sh.or_ (null_eq ptr) (Sh.seg pseg) in
let sub, ms, us =
assign
~ws:(Set.add Var.Set.empty reg)
~rs:(Set.union foot.us (Exp.fv siz))
~us
in
let loc = Exp.var reg in
let siz = Exp.rename sub siz in
let {us; xs; seg= rseg} = fresh_seg ~loc ~bas:loc ~len:siz ~siz ~xs us in
let a0 = pseg.arr in
let a1 = rseg.arr in
let a2, _, xs = fresh_var "a" us xs in
let foot = Sh.extend_us xs (Sh.or_ (null_eq ptr) (Sh.seg pseg)) in
let post =
Sh.or_
(Sh.and_ Exp.(eq loc null) foot)
(Sh.and_ Exp.(eq loc null) (Sh.rename sub foot))
(Sh.and_
Exp.(
conditional ~cnd:(le len siz)
@ -343,28 +390,33 @@ let realloc_spec us reg ptr siz =
; memory ~siz:(sub Typ.siz len siz) ~arr:a2 |])))
(Sh.seg rseg))
in
{xs; foot; post}
{xs; foot; sub; ms; post}
(* { s≠0 * p-[p;m)->⟨m,α⟩ }
* rallocx r p s
* { (r=0 * p-[p;m)->m,α)
* α',α'' . r-[r;s)->s,α'
* * (ms ? s,α'=m,α^s-m,α'' : m,α=s,α'^m-s,α'') }
* { (r=0 * pΘ-[pΘ;m)->m,α)
* α',α'' . r-[r;sΘ)->sΘ,α'
* * (msΘ ? sΘ,α'=m,α^sΘ-m,α'' : m,α=sΘ,α'^m-sΘ,α'') }
*)
let rallocx_spec us reg ptr siz =
let len, us, xs = fresh_var "m" us Var.Set.empty in
let {us; xs; seg= pseg} =
fresh_seg ~loc:ptr ~bas:ptr ~len ~siz:len ~xs us
in
let pheap = Sh.seg pseg in
let foot = Sh.and_ Exp.(dq siz zero) pheap in
let sub, ms, us =
assign ~ws:(Set.add Var.Set.empty reg) ~rs:foot.us ~us
in
let loc = Exp.var reg in
let siz = Exp.rename sub siz in
let {us; xs; seg= rseg} = fresh_seg ~loc ~bas:loc ~len:siz ~siz ~xs us in
let a0 = pseg.arr in
let a1 = rseg.arr in
let a2, _, xs = fresh_var "a" us xs in
let foot = Sh.extend_us xs (Sh.and_ Exp.(dq siz zero) (Sh.seg pseg)) in
let post =
Sh.or_
(Sh.and_ Exp.(eq loc null) foot)
(Sh.and_ Exp.(eq loc null) (Sh.rename sub pheap))
(Sh.and_
Exp.(
conditional ~cnd:(le len siz)
@ -380,24 +432,33 @@ let rallocx_spec us reg ptr siz =
; memory ~siz:(sub Typ.siz len siz) ~arr:a2 |])))
(Sh.seg rseg))
in
{xs; foot; post}
{xs; foot; sub; ms; post}
(* { s≠0 * p-[p;m)->⟨m,α⟩ }
* xallocx r p s e
* { α',α'' . srs+e * p-[p;r)->r,α'
* { α',α'' . sΘr(s+e)Θ * pΘ-[pΘ;r)->r,α'
* * (mr ? r,α'=m,α^r-m,α'' : m,α=r,α'^m-r,α'') }
*)
let xallocx_spec us reg ptr siz ext =
let len, us, xs = fresh_var "m" us Var.Set.empty in
let {us; xs; seg} = fresh_seg ~loc:ptr ~bas:ptr ~len ~siz:len ~xs us in
let foot = Sh.and_ Exp.(dq siz zero) (Sh.seg seg) in
let sub, ms, us =
assign
~ws:(Set.add Var.Set.empty reg)
~rs:Set.(union foot.us (union (Exp.fv siz) (Exp.fv ext)))
~us
in
let reg = Exp.var reg in
let ptr = Exp.rename sub ptr in
let siz = Exp.rename sub siz in
let ext = Exp.rename sub ext in
let {us; xs; seg= seg'} =
fresh_seg ~loc:ptr ~bas:ptr ~len:reg ~siz:reg ~xs us
in
let a0 = seg.arr in
let a1 = seg'.arr in
let a2, _, xs = fresh_var "a" us xs in
let foot = Sh.extend_us xs (Sh.and_ Exp.(dq siz zero) (Sh.seg seg)) in
let post =
Sh.and_
Exp.(
@ -416,40 +477,44 @@ let xallocx_spec us reg ptr siz ext =
(and_ (le siz reg) (le reg (add Typ.siz siz ext))))
(Sh.seg seg')
in
{xs; foot; post}
{xs; foot; sub; ms; post}
(* { p-[p;m)->⟨m,α⟩ }
* sallocx r p
* { r=m * p-[p;m)->m,α }
* { r=m * (p-[p;m)->m,α)Θ }
*)
let sallocx_spec us reg ptr =
let len, us, xs = fresh_var "m" us Var.Set.empty in
let {xs; seg} = fresh_seg ~loc:ptr ~bas:ptr ~len ~siz:len ~xs us in
let {us; xs; seg} = fresh_seg ~loc:ptr ~bas:ptr ~len ~siz:len ~xs us in
let foot = Sh.seg seg in
let post = Sh.and_ Exp.(eq (var reg) len) foot in
{xs; foot; post}
let sub, ms, _ = assign ~ws:(Set.add Var.Set.empty reg) ~rs:foot.us ~us in
let post = Sh.and_ Exp.(eq (var reg) len) (Sh.rename sub foot) in
{xs; foot; sub; ms; post}
(* { p-[p;m)->⟨m,α⟩ }
* malloc_usable_size r p
* { mr * p-[p;m)->m,α }
* { mr * (p-[p;m)->m,α)Θ }
*)
let malloc_usable_size_spec us reg ptr =
let len, us, xs = fresh_var "m" us Var.Set.empty in
let {xs; seg} = fresh_seg ~loc:ptr ~bas:ptr ~len ~siz:len ~xs us in
let {us; xs; seg} = fresh_seg ~loc:ptr ~bas:ptr ~len ~siz:len ~xs us in
let foot = Sh.seg seg in
let post = Sh.and_ Exp.(le len (var reg)) foot in
{xs; foot; post}
let sub, ms, _ = assign ~ws:(Set.add Var.Set.empty reg) ~rs:foot.us ~us in
let post = Sh.and_ Exp.(le len (var reg)) (Sh.rename sub foot) in
{xs; foot; sub; ms; post}
(* { s≠0 }
* r = nallocx s
* { r=0 r=s }
* { r=0 r=sΘ }
*)
let nallocx_spec _ reg siz =
let loc = Exp.var reg in
let nallocx_spec us reg siz =
let xs = Var.Set.empty in
let foot = Sh.pure (Exp.dq siz zero) in
let sub, ms, _ = assign ~ws:(Set.add Var.Set.empty reg) ~rs:foot.us ~us in
let loc = Exp.var reg in
let siz = Exp.rename sub siz in
let post = Sh.or_ (null_eq loc) (Sh.pure (Exp.eq loc siz)) in
{xs; foot; post}
{xs; foot; sub; ms; post}
let size_of_int_mul n =
Exp.mul Typ.siz (Option.value_exn (Exp.size_of Typ.siz)) n
@ -463,14 +528,13 @@ let mallctl_read_spec us r i w n =
let {us; xs; seg= rseg} = fresh_seg ~loc:r ~siz:iseg.arr ~xs us in
let a, _, xs = fresh_var "a" us xs in
let foot =
Sh.extend_us xs
(Sh.and_
Sh.and_
Exp.(eq w null)
(Sh.and_ Exp.(eq n zero) (Sh.star (Sh.seg iseg) (Sh.seg rseg))))
(Sh.and_ Exp.(eq n zero) (Sh.star (Sh.seg iseg) (Sh.seg rseg)))
in
let rseg' = {rseg with arr= a} in
let post = Sh.star (Sh.seg rseg') (Sh.seg iseg) in
{xs; foot; post}
{xs; foot; sub= Var.Subst.empty; ms= Var.Set.empty; post}
(* { p-[_;_)->⟨W×l,_⟩ * r-[_;_)->⟨m,_⟩ * i-[_;_)->⟨_,m⟩ * w=0 * n=0 }
* mallctlbymib p l r i w n
@ -486,24 +550,23 @@ let mallctlbymib_read_spec us p l r i w n =
let const = Sh.star (Sh.seg pseg) (Sh.seg iseg) in
let a, _, xs = fresh_var "a" us xs in
let foot =
Sh.extend_us xs
(Sh.and_
Sh.and_
Exp.(eq w null)
(Sh.and_ Exp.(eq n zero) (Sh.star const (Sh.seg rseg))))
(Sh.and_ Exp.(eq n zero) (Sh.star const (Sh.seg rseg)))
in
let rseg' = {rseg with arr= a} in
let post = Sh.star (Sh.seg rseg') const in
{xs; foot; post}
{xs; foot; sub= Var.Subst.empty; ms= Var.Set.empty; post}
(* { r=0 * i=0 * w-[_;_)->⟨n,_⟩ }
* mallctl r i w n
* { w-[_;_)->n,_ }
*)
let mallctl_write_spec us r i w n =
let {xs; seg} = fresh_seg ~loc:w ~siz:n us in
let {us= _; xs; seg} = fresh_seg ~loc:w ~siz:n us in
let post = Sh.seg seg in
let foot = Sh.and_ Exp.(eq r null) (Sh.and_ Exp.(eq i zero) post) in
{xs; foot; post}
{xs; foot; sub= Var.Subst.empty; ms= Var.Set.empty; post}
(* { p-[_;_)->⟨W×l,_⟩ * r=0 * i=0 * w-[_;_)->⟨n,_⟩ }
* mallctl r i w n
@ -513,10 +576,10 @@ let mallctl_write_spec us r i w n =
let mallctlbymib_write_spec us p l r i w n =
let wl = size_of_int_mul l in
let {us; xs; seg= pseg} = fresh_seg ~loc:p ~siz:wl us in
let {xs; seg= wseg} = fresh_seg ~loc:w ~siz:n ~xs us in
let {us= _; xs; seg= wseg} = fresh_seg ~loc:w ~siz:n ~xs us in
let post = Sh.star (Sh.seg pseg) (Sh.seg wseg) in
let foot = Sh.and_ Exp.(eq r null) (Sh.and_ Exp.(eq i zero) post) in
{xs; foot; post}
{xs; foot; sub= Var.Subst.empty; ms= Var.Set.empty; post}
let mallctl_specs us r i w n =
[mallctl_read_spec us r i w n; mallctl_write_spec us r i w n]
@ -541,10 +604,10 @@ let mallctlnametomib_spec us p o =
let wn = size_of_int_mul n in
let {us; xs; seg= pseg} = fresh_seg ~loc:p ~siz:wn ~xs us in
let a, _, xs = fresh_var "a" us xs in
let foot = Sh.extend_us xs (Sh.star (Sh.seg oseg) (Sh.seg pseg)) in
let foot = Sh.star (Sh.seg oseg) (Sh.seg pseg) in
let pseg' = {pseg with arr= a} in
let post = Sh.star (Sh.seg pseg') (Sh.seg oseg) in
{xs; foot; post}
{xs; foot; sub= Var.Subst.empty; ms= Var.Set.empty; post}
(*
* cstring - see e.g. http://www.cplusplus.com/reference/cstring/
@ -552,30 +615,41 @@ let mallctlnametomib_spec us p o =
(* { p-[b;m)->⟨l,α⟩ }
* r = strlen p
* { r=b+m-p-1 * p-[b;m)->l,α }
* { r=(b+m-p-1)Θ * (p-[b;m)->l,α)Θ }
*)
let strlen_spec us reg ptr =
let {xs; seg} = fresh_seg ~loc:ptr us in
let {us; xs; seg} = fresh_seg ~loc:ptr us in
let foot = Sh.seg seg in
let {Sh.loc= p; bas= b; len= m} = seg in
let sub, ms, _ = assign ~ws:(Set.add Var.Set.empty reg) ~rs:foot.us ~us in
let {Sh.loc= p; bas= b; len= m; _} = seg in
let ret =
Exp.sub Typ.siz
(Exp.sub Typ.siz (Exp.add Typ.siz b m) p)
(Exp.integer Z.one Typ.siz)
in
let post = Sh.and_ (Exp.eq (Exp.var reg) ret) foot in
{xs; foot; post}
let post =
Sh.and_ (Exp.eq (Exp.var reg) (Exp.rename sub ret)) (Sh.rename sub foot)
in
{xs; foot; sub; ms; post}
(*
* Symbolic Execution
*)
(* execute a command with given spec from pre *)
let exec_spec pre {xs; foot; post} =
let exec_spec pre {xs; foot; sub; ms; post} =
[%Trace.call fun {pf} ->
pf "@[%a@]@ @[<2>%a@,@[<hv>{%a }@;<1 -1>--@ {%a }@]@]" Sh.pp pre
pf "@[%a@]@ @[<2>%a@,@[<hv>{%a %a}@;<1 -1>%a--@ {%a }@]@]" Sh.pp pre
(Sh.pp_us ~pre:"@<2>∀ ")
xs Sh.pp foot Sh.pp post ;
xs Sh.pp foot
(fun fs sub ->
if not (Var.Subst.is_empty sub) then
Format.fprintf fs "∧ %a" Var.Subst.pp sub )
sub
(fun fs ms ->
if not (Set.is_empty ms) then
Format.fprintf fs "%a := " Var.Set.pp ms )
ms Sh.pp post ;
assert (
let vs = Set.diff (Set.diff foot.Sh.us xs) pre.Sh.us in
Set.is_empty vs || Trace.fail "unbound foot: {%a}" Var.Set.pp vs ) ;
@ -583,9 +657,13 @@ let exec_spec pre {xs; foot; post} =
let vs = Set.diff (Set.diff post.Sh.us xs) pre.Sh.us in
Set.is_empty vs || Trace.fail "unbound post: {%a}" Var.Set.pp vs )]
;
let foot = Sh.extend_us xs foot in
let zs, pre = Sh.bind_exists pre ~wrt:xs in
( match Solver.infer_frame pre xs foot with
| Some frame -> Ok (Sh.exists (Set.union zs xs) (Sh.star frame post))
| Some frame ->
Ok
(Sh.exists (Set.union zs xs)
(Sh.star post (Sh.exists ms (Sh.rename sub frame))))
| None -> Error () )
|>
[%Trace.retn fun {pf} r -> pf "%a" (Result.pp "%a" Sh.pp) r]
@ -593,7 +671,7 @@ let exec_spec pre {xs; foot; post} =
(* execute a multiple-spec command, where the disjunction of the specs
preconditions are known to be tautologous *)
let rec exec_specs pre = function
| ({xs; foot} as spec) :: specs ->
| ({xs; foot; _} as spec) :: specs ->
let open Result.Monad_infix in
let pre_pure = Sh.star (Sh.exists xs (Sh.pure_approx foot)) pre in
exec_spec pre_pure spec
@ -608,14 +686,17 @@ let inst : Sh.t -> Llair.inst -> (Sh.t, unit) result =
assert (Set.disjoint (Sh.fv pre) (Llair.Inst.locals inst)) ;
let us = pre.us in
match inst with
| Load {reg; ptr; len} -> exec_spec pre (load_spec us reg ptr len)
| Store {ptr; exp; len} -> exec_spec pre (store_spec us ptr exp len)
| Memset {dst; byt; len} -> exec_spec pre (memset_spec us dst byt len)
| Memcpy {dst; src; len} -> exec_specs pre (memcpy_specs us dst src len)
| Memmov {dst; src; len} -> exec_specs pre (memmov_specs us dst src len)
| Alloc {reg; num; len} -> exec_spec pre (alloc_spec us reg num len)
| Free {ptr} -> exec_spec pre (free_spec us ptr)
| Nondet _ -> Ok pre
| Load {reg; ptr; len; _} -> exec_spec pre (load_spec us reg ptr len)
| Store {ptr; exp; len; _} -> exec_spec pre (store_spec us ptr exp len)
| Memset {dst; byt; len; _} -> exec_spec pre (memset_spec us dst byt len)
| Memcpy {dst; src; len; _} ->
exec_specs pre (memcpy_specs us dst src len)
| Memmov {dst; src; len; _} ->
exec_specs pre (memmov_specs us dst src len)
| Alloc {reg; num; len; _} -> exec_spec pre (alloc_spec us reg num len)
| Free {ptr; _} -> exec_spec pre (free_spec us ptr)
| Nondet {reg= Some reg; _} -> Ok (kill pre reg)
| Nondet {reg= None; _} -> Ok pre
| Abort _ -> Error ()
let skip : Sh.t -> (Sh.t, _) result option = fun pre -> Some (Ok pre)

Loading…
Cancel
Save