|
|
|
@ -742,7 +742,7 @@ and rational Q.{num; den} typ = simp_div (integer num typ) (integer den typ)
|
|
|
|
|
and simp_div x y =
|
|
|
|
|
match (x, y) with
|
|
|
|
|
(* i / j *)
|
|
|
|
|
| Integer {data= i; typ}, Integer {data= j} ->
|
|
|
|
|
| Integer {data= i; typ}, Integer {data= j} when not (Z.equal Z.zero j) ->
|
|
|
|
|
let bits = Option.value_exn (Typ.prim_bit_size_of typ) in
|
|
|
|
|
integer (Z.bdiv ~bits i j) typ
|
|
|
|
|
(* e / 1 ==> e *)
|
|
|
|
@ -755,7 +755,7 @@ and simp_div x y =
|
|
|
|
|
let simp_udiv x y =
|
|
|
|
|
match (x, y) with
|
|
|
|
|
(* i u/ j *)
|
|
|
|
|
| Integer {data= i; typ}, Integer {data= j} ->
|
|
|
|
|
| Integer {data= i; typ}, Integer {data= j} when not (Z.equal Z.zero j) ->
|
|
|
|
|
let bits = Option.value_exn (Typ.prim_bit_size_of typ) in
|
|
|
|
|
integer (Z.budiv ~bits i j) typ
|
|
|
|
|
(* e u/ 1 ==> e *)
|
|
|
|
@ -765,7 +765,7 @@ let simp_udiv x y =
|
|
|
|
|
let simp_rem x y =
|
|
|
|
|
match (x, y) with
|
|
|
|
|
(* i % j *)
|
|
|
|
|
| Integer {data= i; typ}, Integer {data= j} ->
|
|
|
|
|
| Integer {data= i; typ}, Integer {data= j} when not (Z.equal Z.zero j) ->
|
|
|
|
|
let bits = Option.value_exn (Typ.prim_bit_size_of typ) in
|
|
|
|
|
integer (Z.brem ~bits i j) typ
|
|
|
|
|
(* e % 1 ==> 0 *)
|
|
|
|
@ -775,7 +775,7 @@ let simp_rem x y =
|
|
|
|
|
let simp_urem x y =
|
|
|
|
|
match (x, y) with
|
|
|
|
|
(* i u% j *)
|
|
|
|
|
| Integer {data= i; typ}, Integer {data= j} ->
|
|
|
|
|
| Integer {data= i; typ}, Integer {data= j} when not (Z.equal Z.zero j) ->
|
|
|
|
|
let bits = Option.value_exn (Typ.prim_bit_size_of typ) in
|
|
|
|
|
integer (Z.burem ~bits i j) typ
|
|
|
|
|
(* e u% 1 ==> 0 *)
|
|
|
|
|