Summary: Similarly as for issue types, we want to generate the website documentation from infer itself so we can easily cross-reference checkers and the issue types they report. This imports the website documentation written for some (very few) of the checkers. I wrote some cursory one-liners for the rest. Reviewed By: dulmarod Differential Revision: D21934375 fbshipit-source-id: 8c9dc2b08master
parent
f34bd2b069
commit
0bf23c66fd
@ -0,0 +1,689 @@
|
|||||||
|
For C/C++ and Objective-C languages, we provide a linters framework. These are
|
||||||
|
checks about the syntax of the program; it could be about a property, or about
|
||||||
|
code inside one method, or that a class or method have certain properties. We
|
||||||
|
provide [a few checks](/docs/linters-bug-types) and we have developed a domain
|
||||||
|
specific language (DSL) to make it easier to write checks.
|
||||||
|
|
||||||
|
## AL: A declarative language for writing linters in Infer
|
||||||
|
|
||||||
|
One of the major advantage of Infer when compared with other static analyzers is
|
||||||
|
the fact it performs sophisticated inter-procedural/inter-file analysis. That
|
||||||
|
is, Infer can detect bugs which involve tracking values through many procedure
|
||||||
|
calls and the procedures may live in different files. These may be very subtle
|
||||||
|
bugs and designing static analyses to do that is quite involved and normally
|
||||||
|
requires deep static analysis expertise.
|
||||||
|
|
||||||
|
However, there are many important software bugs that are confined in the code of
|
||||||
|
a single procedure (called intra-procedural). To detect these bugs simpler
|
||||||
|
analyses may suffice which do not require deep technical expertise in static
|
||||||
|
analysis. Often these bugs can be expressed by referring to the syntax of the
|
||||||
|
program, or the types of certain expressions. We have defined a new language to
|
||||||
|
easily design checkers which identify these kind of bugs. The language is called
|
||||||
|
AL (AST Language) and its main feature is the ability to reason about the
|
||||||
|
Abstract Syntax Tree of a program in a concise declarative way. AL's checkers
|
||||||
|
are interpreted by Infer to analyze programs. Thus, to detect new kind of bugs
|
||||||
|
in Infer one can just write a check in AL. We will see in more detail later,
|
||||||
|
that for writing AL formulas we also need predicates: simple functions that
|
||||||
|
check a property of the AST. Predicates are written in OCaml inside Infer, thus
|
||||||
|
it requires a bit of OCaml knowledge and getting familiar with the OCaml data
|
||||||
|
structure for the clang AST.
|
||||||
|
|
||||||
|
## Getting the clang AST
|
||||||
|
|
||||||
|
When you write a linter that traverses the AST of some programs to check some
|
||||||
|
property, you probably need to understand what the AST looks like. You can get
|
||||||
|
the AST of programs using clang directly, or using Infer.
|
||||||
|
|
||||||
|
If you have a clang command `clang <clang arguments> File.m` then you can get
|
||||||
|
the AST with
|
||||||
|
|
||||||
|
```bash
|
||||||
|
clang <clang arguments> -Xclang -ast-dump -fsyntax-only File.m
|
||||||
|
```
|
||||||
|
|
||||||
|
You can also get the AST using Infer. One advantage of this is that you don't
|
||||||
|
need to know the speicifc clang command, just the general build command.
|
||||||
|
Moreover, what you get here is exactly the form of the AST that Infer has as
|
||||||
|
input.
|
||||||
|
|
||||||
|
For this you need to install an OCaml package `biniou` with
|
||||||
|
`opam install biniou`. See [the opam website](https://opam.ocaml.org/) for
|
||||||
|
instructions on how to install opam.
|
||||||
|
|
||||||
|
Then, the AST can be created by Infer in debug mode. Call Infer with
|
||||||
|
|
||||||
|
```bash
|
||||||
|
infer --debug -- <build command>
|
||||||
|
```
|
||||||
|
|
||||||
|
This will, among other things, generate a file `/path/to/File.m.ast.sh` for
|
||||||
|
every file `/path/to/File.m` that is being analyzed. Run this script with
|
||||||
|
`bash File.m.ast.sh` and a file `/path/to/File.m.ast.bdump` will be generated,
|
||||||
|
that contains the AST of the program in `bdump` format (similar to json). If you
|
||||||
|
get an error about `bdump` not being found you may need to run
|
||||||
|
`eval $(opam env)` to get the `bdump` executable (provided by the biniou opam
|
||||||
|
package) into your `PATH`.
|
||||||
|
|
||||||
|
For general info on the clang AST, you can check out
|
||||||
|
[clang's website](http://clang.llvm.org/docs/IntroductionToTheClangAST.html).
|
||||||
|
|
||||||
|
## Using AL to write linters
|
||||||
|
|
||||||
|
Let's start with an example. Suppose we want to write the following
|
||||||
|
Objective-C's linter:
|
||||||
|
|
||||||
|
_"a property containing the word 'delegate', but not containing the word 'queue'
|
||||||
|
should not be declared strong"_.
|
||||||
|
|
||||||
|
We can write this property in the following way:
|
||||||
|
|
||||||
|
```bash
|
||||||
|
DEFINE-CHECKER STRONG_DELEGATE_WARNING = {
|
||||||
|
|
||||||
|
LET name_contains_delegate =
|
||||||
|
declaration_has_name(REGEXP("[dD]elegate"));
|
||||||
|
|
||||||
|
LET name_does_not_contain_queue =
|
||||||
|
NOT declaration_has_name(REGEXP("[qQ]ueue"));
|
||||||
|
|
||||||
|
SET report_when =
|
||||||
|
WHEN
|
||||||
|
name_contains_delegate
|
||||||
|
AND name_does_not_contain_queue
|
||||||
|
AND is_strong_property()
|
||||||
|
HOLDS-IN-NODE ObjCPropertyDecl;
|
||||||
|
|
||||||
|
SET message = "Property or ivar %decl_name% declared strong";
|
||||||
|
SET suggestion = "In general delegates should be declared weak or assign";
|
||||||
|
SET severity = "WARNING"
|
||||||
|
};
|
||||||
|
```
|
||||||
|
|
||||||
|
The linter definition starts with the keyword `DEFINE-CHECKER` followed by the
|
||||||
|
checker's name. The first `LET` clause defines the _formula variable_
|
||||||
|
`name_contains_delegate` using the predicate `declaration_has_name` which return
|
||||||
|
true/false depending whether the property's name contains a word in the language
|
||||||
|
of the regular expression `[dD]elegate`. In general a predicate is a simple
|
||||||
|
atomic formula evaluated on an AST node. The list of available predicates is in
|
||||||
|
the module
|
||||||
|
[`cPredicates.mli`](https://github.com/facebook/infer/blob/master/infer/src/clang/cPredicates.mli)
|
||||||
|
(this list is continuously growing and if you need a new predicate you can add
|
||||||
|
it in ocaml). Formula variables can be used to simplify other definitions. The
|
||||||
|
`SET report_when` is mandatory and defines a formula that, when evaluates to
|
||||||
|
true, will tell Infer to report an error. In the case above, the formula is
|
||||||
|
saying that we should report when visiting an `ObjCPropertyDecl` (that is the
|
||||||
|
AST node declaring a property in Objective-C) where it holds that: the name
|
||||||
|
contains "delegate/Delegate" (`name_contains_delegate`) and the name doesn't
|
||||||
|
contain "queue/Queue" (`name_does_not_contain_queue`) and the node is defining a
|
||||||
|
"strong" property (`is_strong_property()`).
|
||||||
|
|
||||||
|
The `SET message` clause defines the error message that will be displayed to the
|
||||||
|
user. Notice that the message can include placeholders like `%decl_name%`.
|
||||||
|
Placeholders are evaluated by Infer and substituted by their current value when
|
||||||
|
the error message is reported. In this case the name of the declaration. The
|
||||||
|
`SET suggestion` clause define an optional hint to give to programmer on how to
|
||||||
|
fix the problem.
|
||||||
|
|
||||||
|
The general structure of a checker is the following:
|
||||||
|
|
||||||
|
```bash
|
||||||
|
DEFINE-CHECKER id_of_the_checker = {
|
||||||
|
|
||||||
|
LET formula = <formula definition>;
|
||||||
|
LET ….
|
||||||
|
|
||||||
|
SET report_when = <formula definition>;
|
||||||
|
|
||||||
|
SET name = <optional name>;
|
||||||
|
SET message = <error message to show the user>;
|
||||||
|
SET suggestion = <optional suggestion to the user>;
|
||||||
|
SET doc_url = <optional URL to documentation of the issue>;
|
||||||
|
SET severity = INFO | LIKE | ADVICE | WARNING | ERROR;
|
||||||
|
SET mode = ON | OFF
|
||||||
|
SET whitelist_path = {path1, path2, ..., pathn };
|
||||||
|
SET blacklist_path = {path1, path2, ..., pathn };
|
||||||
|
};
|
||||||
|
```
|
||||||
|
|
||||||
|
The default severity is `WARNING` and the default mode is `ON`, so these are
|
||||||
|
optional. If the check is `OFF` it will only be available in debug mode (flags
|
||||||
|
`--debug` or `--linters-developer-mode`). `INFOs` are generally also not
|
||||||
|
reported, except with some specialzed flags. `name` and `doc_url` are used only
|
||||||
|
for CI comments at the moment (in Phabricator).
|
||||||
|
|
||||||
|
## Defining Paths
|
||||||
|
|
||||||
|
`whitelist_path` and `blacklist_path` are optional, by default the rule is
|
||||||
|
enabled everywhere. For specifying paths, one can use either string constants
|
||||||
|
(`"File.m"`) or regexes (`REGEXP("path/to/.*")`) or variables. The variables
|
||||||
|
stand for a list of paths, and are defined in a separate block:
|
||||||
|
|
||||||
|
```bash
|
||||||
|
GLOBAL-PATHS {
|
||||||
|
path1 = {"A.m", REGEXP("path/to/.*")};
|
||||||
|
};
|
||||||
|
```
|
||||||
|
|
||||||
|
## Defining Macros
|
||||||
|
|
||||||
|
It is possible to define macros that can be used in several checkers. This is
|
||||||
|
done in the following way:
|
||||||
|
|
||||||
|
```bash
|
||||||
|
GLOBAL-MACROS {
|
||||||
|
LET is_subclass_of(x) =
|
||||||
|
is_class(x) HOLDS-IN-SOME-SUPERCLASS-OF ObjCInterfaceDecl;
|
||||||
|
};
|
||||||
|
```
|
||||||
|
|
||||||
|
`GLOBAL-MACROS` is the section of an AL specification where one can define a
|
||||||
|
list of global macros. In the example we are defining the macro `is_subclass(x)`
|
||||||
|
which can now be used in checkers instead of its complex definition.
|
||||||
|
|
||||||
|
It is possible to import a library of macros and paths with the following
|
||||||
|
command:
|
||||||
|
|
||||||
|
```
|
||||||
|
#IMPORT <library.al>
|
||||||
|
```
|
||||||
|
|
||||||
|
In an AL file, the command above import and make available all the macros and
|
||||||
|
paths defined in the `library.al` file.
|
||||||
|
|
||||||
|
## AL Predicates
|
||||||
|
|
||||||
|
The simplest formulas we can write are predicates. They are defined inside
|
||||||
|
Infer. We provide a
|
||||||
|
[library](https://github.com/facebook/infer/blob/master/infer/src/clang/cPredicates.mli),
|
||||||
|
but if the predicate that you require is not available, you will need to extend
|
||||||
|
the library. Here are the some of the currently defined predicates:
|
||||||
|
|
||||||
|
```
|
||||||
|
call_class_method ("class_name", "method_name")
|
||||||
|
call_function ("method_name")
|
||||||
|
call_instance_method ("class_name", "method_name")
|
||||||
|
call_method ("method_name")
|
||||||
|
captures_cxx_references ()
|
||||||
|
context_in_synchronized_block ()
|
||||||
|
declaration_has_name ("decl_name")
|
||||||
|
declaration_ref_name ("decl_ref_name")
|
||||||
|
decl_unavailable_in_supported_ios_sdk ()
|
||||||
|
has_cast_kind("cast_kind") // useful in a cast node
|
||||||
|
has_type ("type") // only builtin types, pointers and Objective-C classes available at the moment
|
||||||
|
isa ("class_name")
|
||||||
|
is_assign_property ()
|
||||||
|
is_binop_with_kind ("kind")
|
||||||
|
is_class ("class_name")
|
||||||
|
is_const_var ()
|
||||||
|
is_global_var ()
|
||||||
|
is_ivar_atomic ()
|
||||||
|
is_method_property_accessor_of_ivar ()
|
||||||
|
is_node ("node_name")
|
||||||
|
is_objc_constructor ()
|
||||||
|
is_objc_dealloc ()
|
||||||
|
is_objc_extension ()
|
||||||
|
is_objc_interface_named ("name")
|
||||||
|
is_property_pointer_type ()
|
||||||
|
is_strong_property ()
|
||||||
|
is_weak_property ()
|
||||||
|
is_unop_with_kind ("kind")
|
||||||
|
method_return_type ("type") // only builtin type, pointers, and Objective-C classes available at the moment
|
||||||
|
objc_method_has_nth_parameter_of_type("type")
|
||||||
|
using_namespace("namespace")
|
||||||
|
within_responds_to_selector_block ()
|
||||||
|
```
|
||||||
|
|
||||||
|
In general, the parameters of predicates can be constants, or variables, or
|
||||||
|
regular expressions. Variables are used in macros, see below. The syntax for
|
||||||
|
using regexes is `REGEX("your_reg_exp_here")`.
|
||||||
|
|
||||||
|
**NOTE:** The predicates that expect types, such as `has_type` or
|
||||||
|
`method_return_type` or `objc_method_has_nth_parameter_of_type` also accept
|
||||||
|
regexes, but the syntax is a bit different: `REGEX('your_reg_exp_here')`, and
|
||||||
|
this regex can be embedded inside another string, for example:
|
||||||
|
`has_type("REGEXP('NS.+')*" )` which stands for pointer to a class of name
|
||||||
|
starting with NS.
|
||||||
|
|
||||||
|
If you need to add a new predicate, write the predicate in
|
||||||
|
[cPredicates.ml](https://github.com/facebook/infer/blob/master/infer/src/clang/cPredicates.ml)
|
||||||
|
and then register it in
|
||||||
|
[CTL.ml](https://github.com/facebook/infer/blob/master/infer/src/clang/cTL.ml#L728).
|
||||||
|
|
||||||
|
## AL Formulas
|
||||||
|
|
||||||
|
Formulas are defined using a variation of the
|
||||||
|
[_CTL temporal logic_](https://en.wikipedia.org/wiki/Computation_tree_logic).
|
||||||
|
CTL is a logic expressing properties of a tree model. In the case of AL, the
|
||||||
|
tree is the AST of the program. Formulas are defined according to the following
|
||||||
|
grammar:
|
||||||
|
|
||||||
|
```
|
||||||
|
formula ::= predicate
|
||||||
|
| NOT formula
|
||||||
|
| formula1 OR formula2
|
||||||
|
| formula1 AND formula2
|
||||||
|
| formula1 IMPLIES formula2
|
||||||
|
| formula1 HOLDS-UNTIL formula2
|
||||||
|
| formula1 HOLDS-EVERYWHERE-UNTIL formula2
|
||||||
|
| formula HOLDS-EVENTUALLY
|
||||||
|
| formula HOLDS-EVERYWHERE-EVENTUALLY
|
||||||
|
| formula HOLDS-NEXT
|
||||||
|
| formula HOLDS-EVERYWHERE-NEXT
|
||||||
|
| formula HOLDS-ALWAYS
|
||||||
|
| formula HOLDS-EVERYWHERE-ALWAYS
|
||||||
|
| WHEN formula HOLDS-IN-NODE node-name-list
|
||||||
|
| IN-NODE node-name-list WITH-TRANSITION transition-name
|
||||||
|
formula HOLDS-EVENTUALLY
|
||||||
|
```
|
||||||
|
|
||||||
|
The first four cases (`NOT`, `OR`, `AND`, `IMPLIES`) are classic boolean
|
||||||
|
operators with the usual semantics. The others are temporal operators describing
|
||||||
|
how the truth-value of a formula is evaluated in a tree. Let's consider case by
|
||||||
|
case.
|
||||||
|
|
||||||
|
| Formula | Semantic meaning |
|
||||||
|
| ------------------- | :-------------------------------------------------------------------------------------------: |
|
||||||
|
| F1 _HOLDS-UNTIL_ F2 | from the current node, there exists a path where F1 holds at every node until F2 becomes true |
|
||||||
|
|
||||||
|
An example is depicted in the following tree. When `F1` or `F2` hold in a node
|
||||||
|
this is indicated between square brackets. The formula `F1 HOLDS-UNTIL F2` holds
|
||||||
|
in the green nodes.
|
||||||
|
|
||||||
|
![](/img/AL/holds_until.jpeg)
|
||||||
|
|
||||||
|
---
|
||||||
|
|
||||||
|
| Formula | Semantic meaning |
|
||||||
|
| -------------------- | :--------------------------------------------------------------------------: |
|
||||||
|
| F _HOLDS-EVENTUALLY_ | from the current node there exists a path where at some point F becomes true |
|
||||||
|
|
||||||
|
In the picture below, as `F` holds in `n10`, then `F HOLDS-EVENTUALLY` holds in
|
||||||
|
the green nodes `n1`, `n7`, `n10`. This is because from these nodes there is a
|
||||||
|
path reaching `n10` where `F` holds. Note that it holds for `n10` as well
|
||||||
|
because there exists a trivial path of length 0 from `n1` to itself.
|
||||||
|
|
||||||
|
![](/img/AL/holds_eventually.jpeg)
|
||||||
|
|
||||||
|
---
|
||||||
|
|
||||||
|
| Formula | Semantic meaning |
|
||||||
|
| ----------------------------- | :-----------------------------------------------------------------------: |
|
||||||
|
| F HOLDS-EVERYWHERE-EVENTUALLY | in every path starting from the current node at some point F becomes true |
|
||||||
|
|
||||||
|
For example, in the tree below, the formula holds in every green node because
|
||||||
|
every paths starting from each of them eventually reaches a node where F holds.
|
||||||
|
|
||||||
|
![](/img/AL/holds_everywhere_eventually.jpeg)
|
||||||
|
|
||||||
|
---
|
||||||
|
|
||||||
|
| Formula | Semantic meaning |
|
||||||
|
| ------------ | :--------------------------------------------------------------------------: |
|
||||||
|
| F HOLDS-NEXT | from the current node (we are visiting) there exists a child where F is true |
|
||||||
|
|
||||||
|
In the tree below, the formula `F HOLDS-NEXT` it is true only in n1 as it's the
|
||||||
|
only node with a child where `F` holds (node n3). In AL, `NEXT` is synonym of
|
||||||
|
child as, in terms of a path in the tree, a child is the next node.
|
||||||
|
|
||||||
|
![](/img/AL/holds_next.jpeg)
|
||||||
|
|
||||||
|
---
|
||||||
|
|
||||||
|
| Formula | Semantic meaning |
|
||||||
|
| ----------------------- | :-----------------------------------------------------: |
|
||||||
|
| F HOLDS-EVERYWHERE-NEXT | from the current node in every existing child F is true |
|
||||||
|
|
||||||
|
In the tree below, the formula `F HOLDS-EVERYWHERE-NEXT` it is true in n1 as
|
||||||
|
it's the only node for which in every child `F` holds (node n2, n3, and n7).
|
||||||
|
|
||||||
|
![](/img/AL/holds_everywhere_next.jpeg)
|
||||||
|
|
||||||
|
---
|
||||||
|
|
||||||
|
| Formula | Semantic meaning |
|
||||||
|
| -------------- | :-------------------------------------------------------------------: |
|
||||||
|
| F HOLDS-ALWAYS | from the current node there exists a path where F holds at every node |
|
||||||
|
|
||||||
|
In the tree below `F HOLDS-ALWAYS` holds in `n1`, `n2`, `n8` because for each of
|
||||||
|
these nodes there exists a path where `F` holds at each node in the path.
|
||||||
|
|
||||||
|
![](/img/AL/always_holds.jpeg)
|
||||||
|
|
||||||
|
---
|
||||||
|
|
||||||
|
| Formula | Semantic meaning |
|
||||||
|
| ------------------------- | :--------------------------------------------------------: |
|
||||||
|
| F HOLDS-EVERYWHERE-ALWAYS | from the current node, in every path F holds at every node |
|
||||||
|
|
||||||
|
`F HOLDS-EVERYWHERE-ALWAYS` holds in `n2`, `n4`, `n5`, and `n8` because when we
|
||||||
|
visit those nodes in every path that start from them `F` holds in every node.
|
||||||
|
|
||||||
|
![](/img/AL/always_holds_everywhere.jpeg)
|
||||||
|
|
||||||
|
---
|
||||||
|
|
||||||
|
| Formula | Semantic meaning |
|
||||||
|
| ---------------------------------- | :----------------------------------------------: |
|
||||||
|
| WHEN F HOLDS-IN-NODE node1,…,nodeK | we are in a node among node1,…,nodeK and F holds |
|
||||||
|
|
||||||
|
`WHEN F HOLDS-IN-NODE` `n2`, `n7`, `n6` holds only in node `n2` as it is the
|
||||||
|
only node in the list `n2`, `n7`, `n6` where F holds.
|
||||||
|
|
||||||
|
![](/img/AL/holds_in_node.jpeg)
|
||||||
|
|
||||||
|
Let's consider an example of checker using formula
|
||||||
|
`WHEN F HOLDS-IN-NODE node1,…,nodeK` for checking that a property with pointer
|
||||||
|
type should not be declared _"assign"_:
|
||||||
|
|
||||||
|
```
|
||||||
|
DEFINE-CHECKER ASSIGN_POINTER_WARNING = {
|
||||||
|
|
||||||
|
SET report_when =
|
||||||
|
WHEN
|
||||||
|
is_assign_property() AND is_property_pointer_type()
|
||||||
|
HOLDS-IN-NODE ObjCPropertyDecl;
|
||||||
|
|
||||||
|
SET message = "Property `%decl_name%` is a pointer type marked with the `assign` attribute";
|
||||||
|
SET suggestion = "Use a different attribute like `strong` or `weak`.";
|
||||||
|
SET severity = "WARNING";
|
||||||
|
};
|
||||||
|
```
|
||||||
|
|
||||||
|
The checker uses two predefined predicates `is_assign_property()` and
|
||||||
|
`is_property_pointer_type()` which are true if the property being declared is
|
||||||
|
assign and has a pointer type respectively. We want to check both conditions
|
||||||
|
only on nodes declaring properties, i.e., `ObjCPropertyDecl`.
|
||||||
|
|
||||||
|
---
|
||||||
|
|
||||||
|
| Formula | Semantic meaning |
|
||||||
|
| ----------------------------------------------------------- | :------------------------------------------------------------------------------------------------------------------------------------------------: |
|
||||||
|
| IN-NODE node1,…, nodeK WITH-TRANSITION t F HOLDS-EVENTUALLY | from the current node there exists a path which eventually reaches a node among “node1,…,nodeK” with a transition t reaching a child where F holds |
|
||||||
|
|
||||||
|
The following tree explain the concept:
|
||||||
|
|
||||||
|
![](/img/AL/in_node_with_transition.jpeg)
|
||||||
|
|
||||||
|
The concept of transition is needed because of the special structure of the
|
||||||
|
clang AST. Certain kind of nodes, for example statements, have a list of
|
||||||
|
children that are statements as well. In this case there is no special tag
|
||||||
|
attached to the edge between the node and the children. Other nodes have
|
||||||
|
records, where some of the fields point to other nodes. For example a node
|
||||||
|
representing a function declaration will have a record where one of the fields
|
||||||
|
is body. This is pointing to a statement representing the function's body. For
|
||||||
|
records, sometimes we need to specify that we need a particular node reachable
|
||||||
|
via a particular field (i.e., a transition).
|
||||||
|
|
||||||
|
**Hint** A good way to learn how to write checkers is looking at existing
|
||||||
|
checkers in the file
|
||||||
|
[linters.al](https://github.com/facebook/infer/blob/master/infer/lib/linter_rules/linters.al).
|
||||||
|
|
||||||
|
## Example checks
|
||||||
|
|
||||||
|
In the following we show a few examples of simple checks you may wish to write
|
||||||
|
and the corresponding formulas:
|
||||||
|
|
||||||
|
- A check for flagging a Objective-C class that inherits from a class that
|
||||||
|
shouldn't be subclassed.
|
||||||
|
|
||||||
|
```
|
||||||
|
DEFINE-CHECKER SUBCLASSING_TEST_EXAMPLE = {
|
||||||
|
SET report_when = is_class("A") HOLDS-IN-SOME-SUPERCLASS-OF ObjCInterfaceDecl;
|
||||||
|
SET message = "This is subclassing A. Class A should not be subclassed.";
|
||||||
|
};
|
||||||
|
```
|
||||||
|
|
||||||
|
- A check for flagging an Objective-C instance method call:
|
||||||
|
|
||||||
|
```
|
||||||
|
DEFINE-CHECKER CALL_INSTANCE_METHOD = {
|
||||||
|
SET report_when = call_instance_method("A", "foo:");
|
||||||
|
SET message = "Do not call this method";
|
||||||
|
};
|
||||||
|
```
|
||||||
|
|
||||||
|
- A check for flagging an Objective-C instance method call of any method of a
|
||||||
|
class:
|
||||||
|
|
||||||
|
```
|
||||||
|
DEFINE-CHECKER CALL_ANY_INSTANCE_METHODS = {
|
||||||
|
SET report_when = call_instance_method(A, REGEXP("*"));
|
||||||
|
SET message = "Do not call any method of class A";
|
||||||
|
};
|
||||||
|
```
|
||||||
|
|
||||||
|
- A check for flagging an Objective-C class method call:
|
||||||
|
|
||||||
|
```
|
||||||
|
DEFINE-CHECKER CALL_CLASS_METHOD = {
|
||||||
|
SET report_when = call_class_method("A", "foo:");
|
||||||
|
SET message = "Do not call this method";
|
||||||
|
};
|
||||||
|
```
|
||||||
|
|
||||||
|
- A check for flagging an Objective-C method call of a method with int return
|
||||||
|
type:
|
||||||
|
|
||||||
|
```
|
||||||
|
DEFINE-CHECKER TEST_RETURN_METHOD = {
|
||||||
|
SET report_when = WHEN method_return_type("int")
|
||||||
|
HOLDS-IN-NODE ObjCMethodDecl;
|
||||||
|
SET message = "Method return int";
|
||||||
|
};
|
||||||
|
```
|
||||||
|
|
||||||
|
- A check for flagging a variable declaration with type long
|
||||||
|
|
||||||
|
```
|
||||||
|
DEFINE-CHECKER TEST_VAR_TYPE_CHECK = {
|
||||||
|
SET report_when = WHEN has_type("long")
|
||||||
|
HOLDS-IN-NODE VarDecl;
|
||||||
|
SET message = "Var %name% has type long";
|
||||||
|
};
|
||||||
|
```
|
||||||
|
|
||||||
|
- A check for flagging a method that has a parameter of type A\*
|
||||||
|
|
||||||
|
```
|
||||||
|
DEFINE-CHECKER TEST_PARAM_TYPE_CHECK = {
|
||||||
|
LET method_has_a_parameter_with_type(x) =
|
||||||
|
WHEN HOLDS-NEXT WITH-TRANSITION Parameters (has_type(x))
|
||||||
|
HOLDS-IN-NODE ObjCMethodDecl;
|
||||||
|
SET report_when =
|
||||||
|
method_has_a_parameter_with_type("A*" );
|
||||||
|
SET message = "Found a method with a parameter of type A";
|
||||||
|
};
|
||||||
|
```
|
||||||
|
|
||||||
|
- A check for flagging a method that has all the parameters of type A\* (and at
|
||||||
|
least one)
|
||||||
|
|
||||||
|
```
|
||||||
|
DEFINE-CHECKER TEST_PARAM_TYPE_CHECK2 = {
|
||||||
|
LET method_has_at_least_a_parameter =
|
||||||
|
WHEN HOLDS-NEXT WITH-TRANSITION Parameters (TRUE)
|
||||||
|
HOLDS-IN-NODE ObjCMethodDecl;
|
||||||
|
|
||||||
|
LET method_has_all_parameter_with_type(x) =
|
||||||
|
WHEN HOLDS-EVERYWHERE-NEXT WITH-TRANSITION Parameters (has_type(x))
|
||||||
|
HOLDS-IN-NODE ObjCMethodDecl;
|
||||||
|
|
||||||
|
SET report_when = method_has_at_least_a_parameter AND
|
||||||
|
method_has_all_parameter_with_type("int");
|
||||||
|
SET message = "All the parameters of the method have type int";
|
||||||
|
};
|
||||||
|
```
|
||||||
|
|
||||||
|
- A check for flagging a method that has the 2nd parameter of type A\*
|
||||||
|
|
||||||
|
```
|
||||||
|
DEFINE-CHECKER TEST_NTH_PARAM_TYPE_CHECK = {
|
||||||
|
SET report_when =
|
||||||
|
WHEN objc_method_has_nth_parameter_of_type("2", "A*")
|
||||||
|
HOLDS-IN-NODE ObjCMethodDecl;
|
||||||
|
SET message = "Found a method with the 2nd parameter of type A*";
|
||||||
|
SET severity = "LIKE";
|
||||||
|
};
|
||||||
|
```
|
||||||
|
|
||||||
|
- A check for flagging a protocol that inherits from a given protocol.
|
||||||
|
`HOLDS-EVENTUALLY WITH-TRANSITION Protocol` means follow the `Protocol` branch
|
||||||
|
in the AST until the condition holds.
|
||||||
|
|
||||||
|
```
|
||||||
|
DEFINE-CHECKER TEST_PROTOCOL_DEF_INHERITANCE = {
|
||||||
|
LET is_subprotocol_of(x) = declaration_has_name(x) HOLDS-EVENTUALLY WITH-TRANSITION Protocol;
|
||||||
|
SET report_when =
|
||||||
|
WHEN is_subprotocol_of("P")
|
||||||
|
HOLDS-IN-NODE ObjCProtocolDecl;
|
||||||
|
SET message = "Do not inherit from Protocol P";
|
||||||
|
};
|
||||||
|
```
|
||||||
|
|
||||||
|
- A check for flagging when a constructor is defined with a parameter of a type
|
||||||
|
that implements a given protocol (or that inherits from it).
|
||||||
|
`HOLDS-NEXT WITH-TRANSITION Parameters` means, starting in the
|
||||||
|
`ObjCMethodDecl` node, follow the `Parameters` branch in the AST and check
|
||||||
|
that the condition holds there.
|
||||||
|
|
||||||
|
```
|
||||||
|
DEFINE-CHECKER TEST_PROTOCOL_TYPE_INHERITANCE = {
|
||||||
|
|
||||||
|
LET method_has_parameter_subprotocol_of(x) =
|
||||||
|
WHEN
|
||||||
|
HOLDS-NEXT WITH-TRANSITION Parameters
|
||||||
|
(has_type_subprotocol_of(x))
|
||||||
|
HOLDS-IN-NODE ObjCMethodDecl;
|
||||||
|
|
||||||
|
SET report_when =
|
||||||
|
WHEN
|
||||||
|
declaration_has_name(REGEXP("^newWith.*:$")) AND
|
||||||
|
method_has_parameter_subprotocol_of("P")
|
||||||
|
HOLDS-IN-NODE ObjCMethodDecl;
|
||||||
|
|
||||||
|
SET message = "Do not define parameters of type P.";
|
||||||
|
};
|
||||||
|
```
|
||||||
|
|
||||||
|
- A check for flagging a variable declaration of type NSArray applied to A.
|
||||||
|
|
||||||
|
```
|
||||||
|
DEFINE-CHECKER TEST_GENERICS_TYPE = {
|
||||||
|
SET report_when =
|
||||||
|
WHEN has_type("NSArray<A>*")
|
||||||
|
HOLDS-IN-NODE VarDecl;
|
||||||
|
SET message = "Do not create arrays of type A";
|
||||||
|
};
|
||||||
|
```
|
||||||
|
|
||||||
|
- A check for flagging using a property or variable that is not available in the
|
||||||
|
supported API. decl_unavailable_in_supported_ios_sdk is a predicate that works
|
||||||
|
on a declaration, checks the available attribute from the declaration and
|
||||||
|
compares it with the supported iOS SDK. Notice that we flag the occurrence of
|
||||||
|
the variable or property, but the attribute is in the declaration, so we need
|
||||||
|
the transition `PointerToDecl` that follows the pointer from the usage to the
|
||||||
|
declaration.
|
||||||
|
|
||||||
|
```
|
||||||
|
DEFINE-CHECKER UNAVAILABLE_API_IN_SUPPORTED_IOS_SDK = {
|
||||||
|
SET report_when =
|
||||||
|
WHEN HOLDS-NEXT WITH-TRANSITION PointerToDecl
|
||||||
|
(decl_unavailable_in_supported_ios_sdk() AND
|
||||||
|
HOLDS-IN-NODE DeclRefExpr;
|
||||||
|
SET message = "%name% is not available in the required iOS SDK version";
|
||||||
|
};
|
||||||
|
```
|
||||||
|
|
||||||
|
- A check for flagging using a given namespace
|
||||||
|
|
||||||
|
```
|
||||||
|
DEFINE-CHECKER TEST_USING_NAMESPACE = {
|
||||||
|
SET report_when = using_namespace("N");
|
||||||
|
SET message = "Do not use namespace N";
|
||||||
|
};
|
||||||
|
```
|
||||||
|
|
||||||
|
- A check for flagging the use of given enum constants
|
||||||
|
|
||||||
|
```
|
||||||
|
DEFINE-CHECKER ENUM_CONSTANTS = {
|
||||||
|
SET report_when = is_enum_constant(REGEXP("MyName.*"));
|
||||||
|
SET message = "Do not use the enum MyName";
|
||||||
|
};
|
||||||
|
```
|
||||||
|
|
||||||
|
## AST info in messages
|
||||||
|
|
||||||
|
When you write the message of your rule, you may want to specify which
|
||||||
|
particular AST items were involved in the issue, such as a type or a variable
|
||||||
|
name. We have a mechanism for that, we specified a few placeholders that can be
|
||||||
|
used in rules with the syntax `%placeholder%` and it will be substituted by the
|
||||||
|
correct AST info. At the moment we have `%type%`, `%child_type%` and `%name%`
|
||||||
|
that print the type of the node, the type of the node's child, and a string
|
||||||
|
representation of the node, respectively. As with predicates, we can add more as
|
||||||
|
needed.
|
||||||
|
|
||||||
|
## Testing your rule
|
||||||
|
|
||||||
|
To test your rule you need to run it with Infer. If you are adding a new linter
|
||||||
|
you can test it in a separate al file that you can pass to Infer with the option
|
||||||
|
`--linters-def-file file.al`. Pass the option
|
||||||
|
`--linters-developer-mode --linter <LINTER_NAME>` to Infer to print debug
|
||||||
|
information and only run the linter you are developing, so it will be faster and
|
||||||
|
the debug info will be only about your linter.
|
||||||
|
|
||||||
|
To test your code, write a small example that triggers the rule. Then, run your
|
||||||
|
code with
|
||||||
|
|
||||||
|
```
|
||||||
|
infer --linters-developer-mode --linters-def-file file.al -- clang -c Test.m
|
||||||
|
```
|
||||||
|
|
||||||
|
the bug should be printed in the screen, like, for instance:
|
||||||
|
|
||||||
|
```
|
||||||
|
infer/tests/codetoanalyze/objcpp/linters/global-var/B.mm:34: warning: GLOBAL_VARIABLE_INITIALIZED_WITH_FUNCTION_OR_METHOD_CALL
|
||||||
|
Global variable kLineSize is initialized using a function or method call at line 34, column 1. If the function/method call is expensive,
|
||||||
|
it can affect the starting time of the app.
|
||||||
|
32. static float kPadding = [A bar] ? 10.0 : 11.0; // Error
|
||||||
|
33.
|
||||||
|
34. > static const float kLineSize = 1 / [A scale]; // Error
|
||||||
|
35.
|
||||||
|
36. static const float ok = 37;
|
||||||
|
37.
|
||||||
|
```
|
||||||
|
|
||||||
|
Moreover, the bug can be found in the file `infer-out/report.json` where
|
||||||
|
`infer-out` is the results directory where Infer operates, that is created in
|
||||||
|
the current directory. You can specify a different directory with the option
|
||||||
|
`-o`.
|
||||||
|
|
||||||
|
## Debugging
|
||||||
|
|
||||||
|
If there are syntax errors or other parsing errors with your al file, you will
|
||||||
|
get an error message when testing the rule, remember to use
|
||||||
|
`linters-developer-mode` when you are developing a rule. If the rule gets parsed
|
||||||
|
but still doesn't behave as you expect, you can debug it, by adding the
|
||||||
|
following line to a test source file in the line where you want to debug the
|
||||||
|
rule: `//INFER_BREAKPOINT`. Then run infer again in linters developer mode, and
|
||||||
|
it will stop the execution of the linter on the line of the breakpoint. Then you
|
||||||
|
can follow the execution step by step. It shows the current formula that is
|
||||||
|
being evaluated, and the current part of the AST that is being checked. A red
|
||||||
|
node means that the formula failed, a green node means that it succeeded.
|
||||||
|
|
||||||
|
## Demo
|
||||||
|
|
||||||
|
<iframe src="https://www.facebook.com/plugins/video.php?href=https%3A%2F%2Fwww.facebook.com%2Finferstaticanalyzer%2Fvideos%2F810308939133850%2F&show_text=0&width=400" width="500" height="500" scrolling="no" frameborder="0" allowTransparency="true" allowFullScreen="true"></iframe>
|
||||||
|
|
||||||
|
## Command line options for linters
|
||||||
|
|
||||||
|
The linters are run by default when you run Infer. However, there is a way of
|
||||||
|
running only the linters, which is faster than also running Infer. This is by
|
||||||
|
adding the option `--linters` to the analysis command as in this example:
|
||||||
|
|
||||||
|
```bash
|
||||||
|
infer run --linters -- clang -c Test.m
|
||||||
|
```
|
||||||
|
|
||||||
|
There are a few other command-line options that are useful for using or
|
||||||
|
developing new linters in Infer. Read about them in the [`infer capture` manual](man-pages).
|
@ -0,0 +1,75 @@
|
|||||||
|
> "I call it my billion-dollar mistake. It was the invention of the null
|
||||||
|
> reference in 1965."
|
||||||
|
>
|
||||||
|
> [Tony Hoare](http://en.wikipedia.org/wiki/Tony_Hoare)
|
||||||
|
|
||||||
|
### What is Infer:Eradicate?
|
||||||
|
|
||||||
|
Infer:Eradicate is a type checker for `@Nullable` annotations for Java. It is part
|
||||||
|
of the Infer static analysis suite of tools. The goal is to eradicate null
|
||||||
|
pointer exceptions.
|
||||||
|
|
||||||
|
<a href="https://developer.android.com/reference/android/support/annotation/Nullable.html">@Nullable</a>
|
||||||
|
annotations denote that a parameter, field or the return value of a method can
|
||||||
|
be null. When decorating a parameter, this denotes that the parameter can
|
||||||
|
legitimately be null and the method will need to deal with it. When decorating a
|
||||||
|
method, this denotes the method might legitimately return null.
|
||||||
|
|
||||||
|
Starting from @Nullable-annotated programs, the checker performs a flow
|
||||||
|
sensitive analysis to propagate the nullability through assignments and calls,
|
||||||
|
and flags errors for unprotected accesses to nullable values or
|
||||||
|
inconsistent/missing annotations. It can also be used to add annotations to a
|
||||||
|
previously un-annotated program.
|
||||||
|
|
||||||
|
### What is the @Nullable convention?
|
||||||
|
|
||||||
|
If you say nothing, you're saying that the value cannot be null. This is the
|
||||||
|
recommended option when possible:
|
||||||
|
|
||||||
|
Program safely, annotate nothing!
|
||||||
|
|
||||||
|
When this cannot be done, add a @Nullable annotation before the type to indicate
|
||||||
|
that the value can be null.
|
||||||
|
|
||||||
|
### What is annotated?
|
||||||
|
|
||||||
|
Annotations are placed at the interface of method calls and field accesses:
|
||||||
|
|
||||||
|
- Parameters and return type of a method declaration.
|
||||||
|
- Field declarations.
|
||||||
|
|
||||||
|
Local variable declarations are not annotated: their nullability is inferred.
|
||||||
|
|
||||||
|
### How is Infer:Eradicate invoked?
|
||||||
|
|
||||||
|
Eradicate can be invoked by adding the option `--eradicate` to the checkers mode
|
||||||
|
as in this example:
|
||||||
|
|
||||||
|
```bash
|
||||||
|
infer run -a checkers --eradicate -- javac Test.java
|
||||||
|
```
|
||||||
|
|
||||||
|
The checker will report an error on the following program that accesses a
|
||||||
|
nullable value without null check:
|
||||||
|
|
||||||
|
```java
|
||||||
|
class C {
|
||||||
|
int getLength(@Nullable String s) {
|
||||||
|
return s.length();
|
||||||
|
}
|
||||||
|
}
|
||||||
|
```
|
||||||
|
|
||||||
|
But it will not report an error on this guarded dereference:
|
||||||
|
|
||||||
|
```java
|
||||||
|
class C {
|
||||||
|
int getLength(@Nullable String s) {
|
||||||
|
if (s != null) {
|
||||||
|
return s.length();
|
||||||
|
} else {
|
||||||
|
return -1;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
```
|
@ -0,0 +1,8 @@
|
|||||||
|
Quandary is a static taint analyzer that identifies a variety of unsafe
|
||||||
|
information flows. It has a small list of built-in
|
||||||
|
[sources](https://github.com/facebook/infer/blob/master/infer/src/quandary/JavaTrace.ml#L36)
|
||||||
|
and
|
||||||
|
[sinks](https://github.com/facebook/infer/blob/master/infer/src/quandary/JavaTrace.ml#L178),
|
||||||
|
and you can define custom sources and sinks in your `.inferconfig` file (see
|
||||||
|
example
|
||||||
|
[here](https://github.com/facebook/infer/blob/master/infer/tests/codetoanalyze/java/quandary/.inferconfig)).
|
@ -0,0 +1,5 @@
|
|||||||
|
Detect several kinds of "starvation" problems:
|
||||||
|
- deadlocks
|
||||||
|
- violations of `@Lockless` annotations
|
||||||
|
- violations of [Android's "strict mode"](https://developer.android.com/reference/android/os/StrictMode)
|
||||||
|
- doing expensive operations on the Android UI thread
|
Loading…
Reference in new issue