[sledge] Remove the "simplified" intermediate between interpreted and uninterpreted

Summary:
The current notion of "simplified" function symbols, which are treated
as a hybrid between interpreted and uninterpreted, has no logical
basis. Normalization is now strong enough, due to stronger handling of
the changing carrier set, that the "simplified" classification can be
removed.

Reviewed By: jvillard

Differential Revision: D20726961

fbshipit-source-id: 9962ea323
master
Josh Berdine 5 years ago committed by Facebook GitHub Bot
parent ee595f2ebf
commit 2124be1c71

@ -9,7 +9,7 @@
(** Classification of Terms by Theory *)
type kind = Interpreted | Simplified | Atomic | Uninterpreted
type kind = Interpreted | Atomic | Uninterpreted
[@@deriving compare, equal]
let classify e =
@ -19,7 +19,6 @@ let classify e =
|Ap3 (Extract, _, _, _)
|ApN (Concat, _) ->
Interpreted
| Ap2 ((Eq | Dq), _, _) -> Simplified
| Ap1 _ | Ap2 _ | Ap3 _ | ApN _ -> Uninterpreted
| RecN _ | Var _ | Integer _ | Rational _ | Float _ | Nondet _ | Label _
->
@ -86,10 +85,7 @@ end = struct
(** apply a substitution to maximal non-interpreted subterms *)
let rec norm s a =
match classify a with
| Interpreted -> Term.map ~f:(norm s) a
| Simplified -> apply s (Term.map ~f:(norm s) a)
| Atomic | Uninterpreted -> apply s a
if interpreted a then Term.map ~f:(norm s) a else apply s a
(** compose two substitutions *)
let compose r s =
@ -353,8 +349,8 @@ let classes r =
Subst.fold r.rep ~init:Term.Map.empty ~f:(fun ~key ~data cls ->
match classify key with
| Interpreted | Atomic -> add key data cls
| Simplified | Uninterpreted ->
add (Term.map ~f:(Subst.apply r.rep) key) data cls )
| Uninterpreted -> add (Term.map ~f:(Subst.apply r.rep) key) data cls
)
let cls_of r e =
let e' = Subst.apply r.rep e in
@ -469,29 +465,26 @@ let rec canon r a =
( match classify a with
| Atomic -> Subst.apply r.rep a
| Interpreted -> Term.map ~f:(canon r) a
| Simplified | Uninterpreted -> (
| Uninterpreted -> (
let a' = Term.map ~f:(canon r) a in
match classify a' with
| Atomic -> Subst.apply r.rep a'
| Interpreted -> a'
| Simplified | Uninterpreted -> lookup r a' ) )
| Uninterpreted -> lookup r a' ) )
|>
[%Trace.retn fun {pf} -> pf "%a" Term.pp]
let rec extend_ a r =
(* omit identity mappings for constants *)
if Term.is_constant a then r
else
match classify a with
(* omit interpreted terms, but consider their subterms *)
| Interpreted | Simplified -> Term.fold ~f:extend_ a ~init:r
else if interpreted a then Term.fold ~f:extend_ a ~init:r
else
(* add uninterpreted terms *)
| Uninterpreted -> (
match Subst.extend a r with
(* and their subterms if newly added *)
| Some r -> Term.fold ~f:extend_ a ~init:r
| None -> r )
| Atomic -> r
| None -> r
(** add a term to the carrier *)
let extend a r =

@ -64,19 +64,24 @@ let%test_module _ =
let f2 = of_eqs [(x, x + !1)]
let%test _ = is_false f2
let%expect_test _ = pp f2 ; [%expect {| {sat= false; rep= []} |}]
let%expect_test _ =
pp f2 ; [%expect {| {sat= false; rep= [[%x_5 ]]} |}]
let f3 = of_eqs [(x + !0, x + !1)]
let%test _ = is_false f3
let%expect_test _ = pp f3 ; [%expect {| {sat= false; rep= []} |}]
let%expect_test _ =
pp f3 ; [%expect {| {sat= false; rep= [[%x_5 ]]} |}]
let f4 = of_eqs [(x, y); (x + !0, y + !1)]
let%test _ = is_false f4
let%expect_test _ =
pp f4 ; [%expect {| {sat= false; rep= [[%y_6 %x_5]]} |}]
pp f4 ;
[%expect {| {sat= false; rep= [[%x_5 ]; [%y_6 %x_5]]} |}]
let t1 = of_eqs [(!1, !1)]
@ -104,7 +109,7 @@ let%test_module _ =
{|
%x_5 = %y_6
{sat= true; rep= [[%y_6 %x_5]]} |}]
{sat= true; rep= [[%x_5 ]; [%y_6 %x_5]]} |}]
let%test _ = entails_eq r1 x y
@ -118,7 +123,10 @@ let%test_module _ =
%x_5 = %y_6 = %z_7 = ((u8) %x_5)
{sat= true;
rep= [[%y_6 %x_5]; [%z_7 %x_5]; [((u8) %x_5) %x_5]]} |}]
rep= [[%x_5 ];
[%y_6 %x_5];
[%z_7 %x_5];
[((u8) %x_5) %x_5]]} |}]
let%test _ = entails_eq r2 x z
let%test _ = entails_eq (or_ r1 r2) x y
@ -139,11 +147,11 @@ let%test_module _ =
pp rs ;
[%expect
{|
{sat= true; rep= [[%y_6 %w_4]; [%z_7 %w_4]]}
{sat= true; rep= [[%w_4 ]; [%y_6 %w_4]; [%z_7 %w_4]]}
{sat= true; rep= [[%y_6 %x_5]; [%z_7 %x_5]]}
{sat= true; rep= [[%x_5 ]; [%y_6 %x_5]; [%z_7 %x_5]]}
{sat= true; rep= [[%z_7 %y_6]]} |}]
{sat= true; rep= [[%y_6 ]; [%z_7 %y_6]]} |}]
let%test _ =
let r = of_eqs [(w, y); (y, z)] in
@ -162,10 +170,12 @@ let%test_module _ =
= (%y_6 rem %t_1)
{sat= true;
rep= [[%u_2 %t_1];
rep= [[%t_1 ];
[%u_2 %t_1];
[%v_3 %t_1];
[%w_4 %t_1];
[%x_5 %t_1];
[%y_6 ];
[%z_7 %t_1];
[(%y_6 rem %v_3) %t_1];
[(%y_6 rem %z_7) %t_1]]} |}]
@ -186,7 +196,8 @@ let%test_module _ =
{sat= true;
rep= [[%w_4 (%z_7 + 3)];
[%x_5 (%z_7 + 8)];
[%y_6 (%z_7 + -4)]]} |}]
[%y_6 (%z_7 + -4)];
[%z_7 ]]} |}]
let%test _ = entails_eq r4 x (w + !5)
let%test _ = difference r4 x w |> Poly.equal (Some (Z.of_int 5))
@ -219,10 +230,19 @@ let%test_module _ =
{|
%v_3 = %x_5 %w_4 = %y_6 = %z_7
{sat= true; rep= [[%x_5 %v_3]; [%y_6 %w_4]; [%z_7 %w_4]]}
{sat= true;
rep= [[%v_3 ];
[%w_4 ];
[%x_5 %v_3];
[%y_6 %w_4];
[%z_7 %w_4]]}
{sat= true;
rep= [[%w_4 %v_3]; [%x_5 %v_3]; [%y_6 %v_3]; [%z_7 %v_3]]}
rep= [[%v_3 ];
[%w_4 %v_3];
[%x_5 %v_3];
[%y_6 %v_3];
[%z_7 %v_3]]}
%v_3 = %w_4 = %x_5 = %y_6 = %z_7 |}]
@ -248,7 +268,11 @@ let%test_module _ =
%v_3 = %w_4 = %x_5 = %y_6 = %z_7
{sat= true;
rep= [[%w_4 %v_3]; [%x_5 %v_3]; [%y_6 %v_3]; [%z_7 %v_3]]} |}]
rep= [[%v_3 ];
[%w_4 %v_3];
[%x_5 %v_3];
[%y_6 %v_3];
[%z_7 %v_3]]} |}]
let%test _ = normalize r7' w |> Term.equal v
@ -267,7 +291,7 @@ let%test_module _ =
{|
(13 × %z_7) = %x_5 14 = %y_6
{sat= true; rep= [[%x_5 (13 × %z_7)]; [%y_6 14]]} |}]
{sat= true; rep= [[%x_5 (13 × %z_7)]; [%y_6 14]; [%z_7 ]]} |}]
let%test _ = entails_eq r8 y !14
@ -280,7 +304,7 @@ let%test_module _ =
{|
(%z_7 + -16) = %x_5
{sat= true; rep= [[%x_5 (%z_7 + -16)]]} |}]
{sat= true; rep= [[%x_5 (%z_7 + -16)]; [%z_7 ]]} |}]
let%test _ = difference r9 z (x + !8) |> Poly.equal (Some (Z.of_int 8))
@ -297,7 +321,7 @@ let%test_module _ =
{|
(%z_7 + -16) = %x_5
{sat= true; rep= [[%x_5 (%z_7 + -16)]]}
{sat= true; rep= [[%x_5 (%z_7 + -16)]; [%z_7 ]]}
(-1 × %x_5 + %z_7 + -8)
@ -327,7 +351,11 @@ let%test_module _ =
[%expect
{|
{sat= true;
rep= [[%z_7 %y_6]; [(%x_5 = 2) %y_6]; [(%x_5 2) %y_6]]} |}]
rep= [[%x_5 ];
[%y_6 ];
[%z_7 %y_6];
[(%x_5 = 2) %y_6];
[(%x_5 2) %y_6]]} |}]
let%test _ = not (is_false r13) (* incomplete *)
@ -335,7 +363,9 @@ let%test_module _ =
let r14 = of_eqs [(a, a); (x, !1)]
let%expect_test _ =
pp r14 ; [%expect {| {sat= true; rep= [[%x_5 1]]} |}]
pp r14 ;
[%expect
{| {sat= true; rep= [[%x_5 1]; [(%x_5 0) -1]]} |}]
let%test _ = entails_eq r14 a Term.true_
@ -346,7 +376,8 @@ let%test_module _ =
pp r14 ;
[%expect
{|
{sat= true; rep= [[%x_5 1]; [(%y_6 0) -1]]} |}]
{sat= true;
rep= [[%x_5 1]; [%y_6 ]; [(%x_5 0) -1]; [(%y_6 0) -1]]} |}]
let%test _ = entails_eq r14 a Term.true_
let%test _ = entails_eq r14 b Term.true_
@ -355,7 +386,9 @@ let%test_module _ =
let r15 = of_eqs [(b, b); (x, !1)]
let%expect_test _ =
pp r15 ; [%expect {| {sat= true; rep= [[%x_5 1]]} |}]
pp r15 ;
[%expect
{| {sat= true; rep= [[%x_5 1]; [(%x_5 0) -1]]} |}]
let%test _ = entails_eq r15 b (Term.signed 1 !1)
let%test _ = entails_eq r15 (Term.unsigned 1 b) !1
@ -370,6 +403,7 @@ let%test_module _ =
{|
{sat= false;
rep= [[%x_5 (%y_6 + 1)];
[%y_6 ];
[((u8) %y_6) (%y_6 + -2)];
[((u8) (%x_5 + -1)) (%y_6 + 3)]]} |}]
@ -383,7 +417,8 @@ let%test_module _ =
[%expect
{|
{sat= false;
rep= [[%y_6 %x_5];
rep= [[%x_5 ];
[%y_6 %x_5];
[((u8) %x_5) %x_5];
[((u8) %y_6) (%x_5 + -1)]]} |}]
@ -396,7 +431,10 @@ let%test_module _ =
[%expect
{|
{sat= true;
rep= [[((u8) %x_5) %x_5]; [((u8) %y_6) (%y_6 + -1)]]}
rep= [[%x_5 ];
[%y_6 ];
[((u8) %x_5) %x_5];
[((u8) %y_6) (%y_6 + -1)]]}
%x_5 = ((u8) %x_5) (%y_6 + -1) = ((u8) %y_6) |}]

Loading…
Cancel
Save