[sledge] Add: Formula.map_terms and use it to remove Context.Subst.substf

Reviewed By: jvillard

Differential Revision: D22571130

fbshipit-source-id: 91c9ee6ca
master
Josh Berdine 4 years ago committed by Facebook GitHub Bot
parent a51f4e5fec
commit 284a2ae165

@ -615,7 +615,7 @@ let fold_vars ~init e ~f =
| `Fml p -> fold_vars_f ~f ~init p
| #cnd as c -> fold_vars_c ~f ~init c
(** map_vars *)
(** map *)
let map1 f e cons x =
let x' = f x in
@ -636,6 +636,29 @@ let mapN f e cons xs =
let xs' = Array.map_endo ~f xs in
if xs' == xs then e else cons xs'
(** map_trms *)
let rec map_trms_f ~f b =
match b with
| Tt | Ff -> b
| Eq (x, y) -> map2 f b _Eq x y
| Dq (x, y) -> map2 f b _Dq x y
| Eq0 x -> map1 f b _Eq0 x
| Dq0 x -> map1 f b _Dq0 x
| Gt0 x -> map1 f b _Gt0 x
| Ge0 x -> map1 f b _Ge0 x
| Lt0 x -> map1 f b _Lt0 x
| Le0 x -> map1 f b _Le0 x
| And (x, y) -> map2 (map_trms_f ~f) b _And x y
| Or (x, y) -> map2 (map_trms_f ~f) b _Or x y
| Iff (x, y) -> map2 (map_trms_f ~f) b _Iff x y
| Xor (x, y) -> map2 (map_trms_f ~f) b _Xor x y
| Cond {cnd; pos; neg} -> map3 (map_trms_f ~f) b _Cond cnd pos neg
| UPosLit (p, x) -> map1 f b (_UPosLit p) x
| UNegLit (p, x) -> map1 f b (_UNegLit p) x
(** map_vars *)
let rec map_vars_t ~f e =
match e with
| Var _ as v -> (f (Var.of_ v) : var :> trm)
@ -654,24 +677,7 @@ let rec map_vars_t ~f e =
| Project {ary; idx; tup} -> map1 (map_vars_t ~f) e (_Project ary idx) tup
| Apply (g, x) -> map1 (map_vars_t ~f) e (_Apply g) x
let rec map_vars_f ~f e =
match e with
| Tt | Ff -> e
| Eq (x, y) -> map2 (map_vars_t ~f) e _Eq x y
| Dq (x, y) -> map2 (map_vars_t ~f) e _Dq x y
| Eq0 x -> map1 (map_vars_t ~f) e _Eq0 x
| Dq0 x -> map1 (map_vars_t ~f) e _Dq0 x
| Gt0 x -> map1 (map_vars_t ~f) e _Gt0 x
| Ge0 x -> map1 (map_vars_t ~f) e _Ge0 x
| Lt0 x -> map1 (map_vars_t ~f) e _Lt0 x
| Le0 x -> map1 (map_vars_t ~f) e _Le0 x
| And (x, y) -> map2 (map_vars_f ~f) e _And x y
| Or (x, y) -> map2 (map_vars_f ~f) e _Or x y
| Iff (x, y) -> map2 (map_vars_f ~f) e _Iff x y
| Xor (x, y) -> map2 (map_vars_f ~f) e _Xor x y
| Cond {cnd; pos; neg} -> map3 (map_vars_f ~f) e _Cond cnd pos neg
| UPosLit (p, x) -> map1 (map_vars_t ~f) e (_UPosLit p) x
| UNegLit (p, x) -> map1 (map_vars_t ~f) e (_UNegLit p) x
let map_vars_f ~f = map_trms_f ~f:(map_vars_t ~f)
let rec map_vars_c ~f c =
match c with
@ -1031,6 +1037,32 @@ module Formula = struct
let map_vars = map_vars_f
let rec map_terms ~f b =
let lift_map1 : (exp -> exp) -> t -> (trm -> t) -> trm -> t =
fun f b cons x -> map1 f b (ap1f cons) (`Trm x)
in
let lift_map2 :
(exp -> exp) -> t -> (trm -> trm -> t) -> trm -> trm -> t =
fun f b cons x y -> map2 f b (ap2f cons) (`Trm x) (`Trm y)
in
match b with
| Tt | Ff -> b
| Eq (x, y) -> lift_map2 f b _Eq x y
| Dq (x, y) -> lift_map2 f b _Dq x y
| Eq0 x -> lift_map1 f b _Eq0 x
| Dq0 x -> lift_map1 f b _Dq0 x
| Gt0 x -> lift_map1 f b _Gt0 x
| Ge0 x -> lift_map1 f b _Ge0 x
| Lt0 x -> lift_map1 f b _Lt0 x
| Le0 x -> lift_map1 f b _Le0 x
| And (x, y) -> map2 (map_terms ~f) b _And x y
| Or (x, y) -> map2 (map_terms ~f) b _Or x y
| Iff (x, y) -> map2 (map_terms ~f) b _Iff x y
| Xor (x, y) -> map2 (map_terms ~f) b _Xor x y
| Cond {cnd; pos; neg} -> map3 (map_terms ~f) b _Cond cnd pos neg
| UPosLit (p, x) -> lift_map1 f b (_UPosLit p) x
| UNegLit (p, x) -> lift_map1 f b (_UNegLit p) x
let fold_map_vars ~init e ~f =
let s = ref init in
let f x =
@ -1392,7 +1424,6 @@ module Context = struct
f ~key:(of_ses key) ~data:(of_ses data) )
let subst s = ses_map (Ses.Equality.Subst.subst s)
let substf s = f_ses_map (Ses.Equality.Subst.subst s)
let partition_valid vs s =
let t, ks, u = Ses.Equality.Subst.partition_valid (vs_to_ses vs) s in

@ -174,6 +174,7 @@ and Formula : sig
(** Transform *)
val map_terms : f:(Term.t -> Term.t) -> t -> t
val map_vars : f:(Var.t -> Var.t) -> t -> t
val fold_map_vars :
@ -254,8 +255,6 @@ module Context : sig
val subst : t -> Term.t -> Term.t
(** Apply a substitution recursively to subterms. *)
val substf : t -> Formula.t -> Formula.t
val partition_valid : Var.Set.t -> t -> t * Var.Set.t * t
(** Partition ∃xs. σ into equivalent ∃xs. τ ∧ ∃ks. ν where ks
and ν are maximal where ks. ν is universally valid, xs ks

@ -638,7 +638,7 @@ let rec norm_ s q =
;
let q =
map q ~f_sjn:(norm_ s) ~f_ctx:Fn.id ~f_trm:(Context.Subst.subst s)
~f_fml:(Context.Subst.substf s)
~f_fml:(Formula.map_terms ~f:(Context.Subst.subst s))
in
let xs, ctx = Context.apply_subst (Var.Set.union q.us q.xs) s q.ctx in
exists_fresh xs {q with ctx}

@ -146,7 +146,7 @@ let%test_module _ =
{|
%x_6 . %x_6 = %x_6^ (-1 + %y_7) = %y_7^ emp
(%y_7^ = (-1 + %y_7)) emp
((%y_7^ = (-1 + %y_7)) tt) emp
(-1 + %y_7) = %y_7^ emp |}]
@ -175,7 +175,9 @@ let%test_module _ =
( %b_2 . (8,%a_1 = (4,%c_3^4,%b_2)) emp)
)
tt emp * ( ( tt emp) ( (%x_6 0) emp) )
((tt (tt tt)) tt)
emp
* ( ( tt emp) ( (%x_6 0) emp) )
( ( emp) ( (%x_6 0) emp) ) |}]
end )

Loading…
Cancel
Save