[sledge] Reorder Context definitions

Summary: No functional change

Reviewed By: jvillard

Differential Revision: D25883734

fbshipit-source-id: f17c080bf
master
Josh Berdine 4 years ago committed by Facebook GitHub Bot
parent 1ddb5fb249
commit 2f0c4af2dd

@ -329,7 +329,13 @@ let ppx var_strength fs clss noneqs =
let pp_diff_cls = Trm.Map.pp_diff ~eq:Cls.equal Trm.pp Cls.pp Cls.pp_diff let pp_diff_cls = Trm.Map.pp_diff ~eq:Cls.equal Trm.pp Cls.pp Cls.pp_diff
(* Basic queries ==========================================================*) (* Basic representation queries ===========================================*)
let trms r =
Iter.flat_map ~f:(fun (k, v) -> Iter.doubleton k v) (Subst.to_iter r.rep)
let vars r = Iter.flat_map ~f:Trm.vars (trms r)
let fv r = Var.Set.of_iter (vars r)
(** test membership in carrier *) (** test membership in carrier *)
let in_car r e = Subst.mem e r.rep let in_car r e = Subst.mem e r.rep
@ -755,11 +761,97 @@ let rename x sub =
in in
if rep == x.rep && cls == x.cls then x else {x with rep; cls} if rep == x.rep && cls == x.cls then x else {x with rep; cls}
let trms r = let trivial vs r =
Iter.flat_map ~f:(fun (k, v) -> Iter.doubleton k v) (Subst.to_iter r.rep) [%trace]
~call:(fun {pf} -> pf "@ %a@ %a" Var.Set.pp_xs vs pp_raw r)
~retn:(fun {pf} ks -> pf "%a" Var.Set.pp_xs ks)
@@ fun () ->
Var.Set.fold vs Var.Set.empty ~f:(fun v ks ->
let x = Trm.var v in
match Subst.find x r.rep with
| None -> Var.Set.add v ks
| Some x' when Trm.equal x x' && Iter.is_empty (uses_of x r) ->
Var.Set.add v ks
| _ -> ks )
let vars r = Iter.flat_map ~f:Trm.vars (trms r) let trim ks x =
let fv r = Var.Set.of_iter (vars r) [%trace]
~call:(fun {pf} -> pf "@ %a@ %a" Var.Set.pp_xs ks pp_raw x)
~retn:(fun {pf} x' ->
pf "%a" pp_raw x' ;
invariant x' ;
assert (Var.Set.disjoint ks (fv x')) )
@@ fun () ->
(* expand classes to include reps *)
let reps =
Subst.fold x.rep Trm.Set.empty ~f:(fun ~key:_ ~data:rep reps ->
Trm.Set.add rep reps )
in
let clss =
Trm.Set.fold reps x.cls ~f:(fun rep clss ->
Trm.Map.update rep clss ~f:(fun cls0 ->
Cls.add rep (Option.value cls0 ~default:Cls.empty) ) )
in
(* enumerate expanded classes and update solution subst *)
let kills = Trm.Set.of_vars ks in
Trm.Map.fold clss x ~f:(fun ~key:a' ~data:ecls x ->
(* remove mappings for non-rep class elements to kill *)
let keep, drop = Trm.Set.diff_inter (Cls.to_set ecls) kills in
if Trm.Set.is_empty drop then x
else
let rep = Trm.Set.fold ~f:Subst.remove drop x.rep in
let x = {x with rep} in
(* new class is keepers without rep *)
let keep' = Trm.Set.remove a' keep in
let ecls = Cls.of_set keep' in
if keep' != keep then
(* a' is to be kept: continue to use it as rep *)
let cls =
if Cls.is_empty ecls then Trm.Map.remove a' x.cls
else Trm.Map.add ~key:a' ~data:ecls x.cls
in
{x with cls}
else
(* a' is to be removed: choose new rep from the keepers *)
let cls = Trm.Map.remove a' x.cls in
let x = {x with cls} in
match
Trm.Set.reduce keep ~f:(fun x y ->
if Theory.prefer x y < 0 then x else y )
with
| Some b' ->
(* add mappings from each keeper to the new representative *)
let rep =
Trm.Set.fold keep x.rep ~f:(fun elt rep ->
Subst.add ~key:elt ~data:b' rep )
in
(* add trimmed class to new rep *)
let cls =
if Cls.is_empty ecls then x.cls
else Trm.Map.add ~key:b' ~data:ecls x.cls
in
{x with rep; cls}
| None ->
(* entire class removed *)
x )
let apply_and_elim ~wrt xs s r =
[%trace]
~call:(fun {pf} -> pf "@ %a%a@ %a" Var.Set.pp_xs xs Subst.pp s pp_raw r)
~retn:(fun {pf} (zs, r', ks) ->
pf "%a@ %a@ %a" Var.Set.pp_xs zs pp_raw r' Var.Set.pp_xs ks ;
invariant r' ;
assert (Var.Set.subset ks ~of_:xs) ;
assert (Var.Set.disjoint ks (fv r')) )
@@ fun () ->
if Subst.is_empty s then (Var.Set.empty, r, Var.Set.empty)
else
let zs, r = apply_subst wrt s r in
if is_unsat r then (Var.Set.empty, unsat, Var.Set.empty)
else
let ks = trivial xs r in
let r = trim ks r in
(zs, r, ks)
(* Existential Witnessing and Elimination =================================*) (* Existential Witnessing and Elimination =================================*)
@ -1138,98 +1230,6 @@ let solve_for_vars vss r =
else `Continue us_xs ) else `Continue us_xs )
~finish:(fun _ -> false) ) )] ~finish:(fun _ -> false) ) )]
let trivial vs r =
[%trace]
~call:(fun {pf} -> pf "@ %a@ %a" Var.Set.pp_xs vs pp_raw r)
~retn:(fun {pf} ks -> pf "%a" Var.Set.pp_xs ks)
@@ fun () ->
Var.Set.fold vs Var.Set.empty ~f:(fun v ks ->
let x = Trm.var v in
match Subst.find x r.rep with
| None -> Var.Set.add v ks
| Some x' when Trm.equal x x' && Iter.is_empty (uses_of x r) ->
Var.Set.add v ks
| _ -> ks )
let trim ks x =
[%trace]
~call:(fun {pf} -> pf "@ %a@ %a" Var.Set.pp_xs ks pp_raw x)
~retn:(fun {pf} x' ->
pf "%a" pp_raw x' ;
invariant x' ;
assert (Var.Set.disjoint ks (fv x')) )
@@ fun () ->
(* expand classes to include reps *)
let reps =
Subst.fold x.rep Trm.Set.empty ~f:(fun ~key:_ ~data:rep reps ->
Trm.Set.add rep reps )
in
let clss =
Trm.Set.fold reps x.cls ~f:(fun rep clss ->
Trm.Map.update rep clss ~f:(fun cls0 ->
Cls.add rep (Option.value cls0 ~default:Cls.empty) ) )
in
(* enumerate expanded classes and update solution subst *)
let kills = Trm.Set.of_vars ks in
Trm.Map.fold clss x ~f:(fun ~key:a' ~data:ecls x ->
(* remove mappings for non-rep class elements to kill *)
let keep, drop = Trm.Set.diff_inter (Cls.to_set ecls) kills in
if Trm.Set.is_empty drop then x
else
let rep = Trm.Set.fold ~f:Subst.remove drop x.rep in
let x = {x with rep} in
(* new class is keepers without rep *)
let keep' = Trm.Set.remove a' keep in
let ecls = Cls.of_set keep' in
if keep' != keep then
(* a' is to be kept: continue to use it as rep *)
let cls =
if Cls.is_empty ecls then Trm.Map.remove a' x.cls
else Trm.Map.add ~key:a' ~data:ecls x.cls
in
{x with cls}
else
(* a' is to be removed: choose new rep from the keepers *)
let cls = Trm.Map.remove a' x.cls in
let x = {x with cls} in
match
Trm.Set.reduce keep ~f:(fun x y ->
if Theory.prefer x y < 0 then x else y )
with
| Some b' ->
(* add mappings from each keeper to the new representative *)
let rep =
Trm.Set.fold keep x.rep ~f:(fun elt rep ->
Subst.add ~key:elt ~data:b' rep )
in
(* add trimmed class to new rep *)
let cls =
if Cls.is_empty ecls then x.cls
else Trm.Map.add ~key:b' ~data:ecls x.cls
in
{x with rep; cls}
| None ->
(* entire class removed *)
x )
let apply_and_elim ~wrt xs s r =
[%trace]
~call:(fun {pf} -> pf "@ %a%a@ %a" Var.Set.pp_xs xs Subst.pp s pp_raw r)
~retn:(fun {pf} (zs, r', ks) ->
pf "%a@ %a@ %a" Var.Set.pp_xs zs pp_raw r' Var.Set.pp_xs ks ;
invariant r' ;
assert (Var.Set.subset ks ~of_:xs) ;
assert (Var.Set.disjoint ks (fv r')) )
@@ fun () ->
if Subst.is_empty s then (Var.Set.empty, r, Var.Set.empty)
else
let zs, r = apply_subst wrt s r in
if is_unsat r then (Var.Set.empty, unsat, Var.Set.empty)
else
let ks = trivial xs r in
let r = trim ks r in
(zs, r, ks)
(* Replay debugging =======================================================*) (* Replay debugging =======================================================*)
type call = type call =

@ -101,10 +101,6 @@ module Subst : sig
ks fv(τ) = . *) ks fv(τ) = . *)
end end
val apply_subst : Var.Set.t -> Subst.t -> t -> Var.Set.t * t
(** Context induced by applying a solution substitution to a set of
equations generating the argument context. *)
val solve_for_vars : Var.Set.t list -> t -> Subst.t val solve_for_vars : Var.Set.t list -> t -> Subst.t
(** [solve_for_vars vss x] is a solution substitution that is implied by [x] (** [solve_for_vars vss x] is a solution substitution that is implied by [x]
and consists of oriented equalities [v e] that map terms [v] with and consists of oriented equalities [v e] that map terms [v] with
@ -112,6 +108,10 @@ val solve_for_vars : Var.Set.t list -> t -> Subst.t
terms [e] with free variables contained in as short a prefix of [uss] as terms [e] with free variables contained in as short a prefix of [uss] as
possible. *) possible. *)
val apply_subst : Var.Set.t -> Subst.t -> t -> Var.Set.t * t
(** Context induced by applying a solution substitution to a set of
equations generating the argument context. *)
val apply_and_elim : val apply_and_elim :
wrt:Var.Set.t -> Var.Set.t -> Subst.t -> t -> Var.Set.t * t * Var.Set.t wrt:Var.Set.t -> Var.Set.t -> Subst.t -> t -> Var.Set.t * t * Var.Set.t
(** Apply a solution substitution to eliminate the solved variables. That (** Apply a solution substitution to eliminate the solved variables. That

Loading…
Cancel
Save