@ -14,12 +14,73 @@ open SatUnsat
type operand = LiteralOperand of IntLit . t | AbstractValueOperand of Var . t
type operand = LiteralOperand of IntLit . t | AbstractValueOperand of Var . t
(* * {!Z} from zarith with a few convenience functions added *)
module Z = struct
include Z
let protect f x = try Some ( f x ) with Division_by_zero | Invalid_argument _ | Z . Overflow -> None
let protect2 f x y =
try Some ( f x y ) with Division_by_zero | Invalid_argument _ | Z . Overflow -> None
let yojson_of_t z = ` String ( Z . to_string z )
[ @@ @ warning " -32 " ]
let div = protect2 Z . div
let rem = protect2 Z . rem
let div_rem = protect2 Z . div_rem
let cdiv = protect2 Z . cdiv
let fdiv = protect2 Z . fdiv
let ediv_rem = protect2 Z . ediv_rem
let ediv = protect2 Z . ediv
let erem = protect2 Z . erem
let divexact = protect2 Z . divexact
let gcd = protect2 Z . gcd
let gcdext = protect2 Z . gcdext
let lcm = protect2 Z . lcm
let powm = protect2 Z . powm
let powm_sec = protect2 Z . powm_sec
let invert = protect2 Z . invert
let ( / ) = protect2 Z . ( / )
let ( /> ) = protect2 Z . ( /> )
let ( /< ) = protect2 Z . ( /< )
let ( /| ) = protect2 Z . ( /| )
let ( mod ) = protect2 Z . ( mod )
end
(* * {!Q} from zarith with a few convenience functions added *)
(* * {!Q} from zarith with a few convenience functions added *)
module Q = struct
module Q = struct
include Q
include Q
type _ q = t = { num : Z . t ; den : Z . t } [ @@ deriving yojson_of ]
let yojson_of_t = [ % yojson_of : _ q ]
let not_equal q1 q2 = not ( Q . equal q1 q2 )
let not_equal q1 q2 = not ( Q . equal q1 q2 )
[ @@ @ warning " -32 " ]
let is_one q = Q . equal q Q . one
let is_one q = Q . equal q Q . one
let is_minus_one q = Q . equal q Q . minus_one
let is_minus_one q = Q . equal q Q . minus_one
@ -28,21 +89,15 @@ module Q = struct
let is_not_zero q = not ( is_zero q )
let is_not_zero q = not ( is_zero q )
let conv_protect f q = try Some ( f q ) with Division_by_zero | Z . Overflow -> None
let to_int q = Z . protect Q . to_int q
let to_int q = conv_protect Q . to_int q
let to_int64 q = conv_protect Q . to_int64 q
let to_ big int q = conv_ protect Q . to_ big int q
let to_int32 q = Z . protect Q . to_int32 q
type z = Z . t
let to_int64 q = Z . protect Q . to_int64 q
let yojson_of_z z = ` String ( Z . to_string z )
let to_bigint q = Z . protect Q . to_bigint q
type _ q = t = { num : z ; den : z } [ @@ deriving yojson_of ]
let to_nativeint q = Z . protect Q . to_nativeint q
let yojson_of_t = [ % yojson_of : _ q ]
end
end
(* * Linear Arithmetic *)
(* * Linear Arithmetic *)
@ -533,7 +588,7 @@ module Term = struct
(* * reduce to a constant when the direct sub-terms are constants *)
(* * reduce to a constant when the direct sub-terms are constants *)
let eval_const_shallow t0 =
let eval_const_shallow _ t0 =
let map_const t f = match t with Const c -> f c | _ -> t0 in
let map_const t f = match t with Const c -> f c | _ -> t0 in
let map_const2 t1 t2 f = match ( t1 , t2 ) with Const c1 , Const c2 -> f c1 c2 | _ -> t0 in
let map_const2 t1 t2 f = match ( t1 , t2 ) with Const c1 , Const c2 -> f c1 c2 | _ -> t0 in
let q_map t q_f = map_const t ( fun c -> Const ( q_f c ) ) in
let q_map t q_f = map_const t ( fun c -> Const ( q_f c ) ) in
@ -548,7 +603,9 @@ module Term = struct
in
in
let map_i64_i64 = conv2 Q . to_int64 Q . to_int64 Q . of_int64 in
let map_i64_i64 = conv2 Q . to_int64 Q . to_int64 Q . of_int64 in
let map_i64_i = conv2 Q . to_int64 Q . to_int Q . of_int64 in
let map_i64_i = conv2 Q . to_int64 Q . to_int Q . of_int64 in
let map_z_z = conv2 Q . to_bigint Q . to_bigint Q . of_bigint in
let map_z_z_opt q1 q2 f =
conv2 Q . to_bigint Q . to_bigint ( Option . map ~ f : Q . of_bigint ) q1 q2 f | > Option . join
in
let or_undef q_opt = Option . value ~ default : Q . undef q_opt in
let or_undef q_opt = Option . value ~ default : Q . undef q_opt in
match t0 with
match t0 with
| Const _ | Var _ | IsInstanceOf _ ->
| Const _ | Var _ | IsInstanceOf _ ->
@ -569,7 +626,7 @@ module Term = struct
q_map2 t1 t2 ( fun c1 c2 -> if Q . is_zero c2 then Q . undef else Q . div c1 c2 )
q_map2 t1 t2 ( fun c1 c2 -> if Q . is_zero c2 then Q . undef else Q . div c1 c2 )
| Mod ( t1 , t2 ) ->
| Mod ( t1 , t2 ) ->
q_map2 t1 t2 ( fun c1 c2 ->
q_map2 t1 t2 ( fun c1 c2 ->
if Q . is_zero c2 then Q . undef else map_z_z c1 c2 Z . ( mod ) | > or_undef )
if Q . is_zero c2 then Q . undef else map_z_z _opt c1 c2 Z . ( mod ) | > or_undef )
| Not t' ->
| Not t' ->
q_predicate_map t' Q . is_zero
q_predicate_map t' Q . is_zero
| And ( t1 , t2 ) ->
| And ( t1 , t2 ) ->
@ -603,7 +660,12 @@ module Term = struct
map_i64_i64 c1 c2 Int64 . bit_xor | > or_undef )
map_i64_i64 c1 c2 Int64 . bit_xor | > or_undef )
let rec simplify_shallow t =
(* defend in depth against exceptions *)
let eval_const_shallow t =
Z . protect eval_const_shallow_ t | > Option . value ~ default : ( Const Q . undef )
let rec simplify_shallow_ t =
match t with
match t with
| Var _ | Const _ ->
| Var _ | Const _ ->
t
t
@ -639,10 +701,10 @@ module Term = struct
Const Q . undef
Const Q . undef
| Div ( t , Const c ) ->
| Div ( t , Const c ) ->
(* [t / c = ( 1/c ) ·t], [c≠0] *)
(* [t / c = ( 1/c ) ·t], [c≠0] *)
simplify_shallow ( Mult ( Const ( Q . inv c ) , t ) )
simplify_shallow _ ( Mult ( Const ( Q . inv c ) , t ) )
| Div ( Minus t1 , Minus t2 ) ->
| Div ( Minus t1 , Minus t2 ) ->
(* [ ( -t1 ) / ( -t2 ) = t1 / t2] *)
(* [ ( -t1 ) / ( -t2 ) = t1 / t2] *)
simplify_shallow ( Div ( t1 , t2 ) )
simplify_shallow _ ( Div ( t1 , t2 ) )
| Div ( t1 , t2 ) when equal_syntax t1 t2 ->
| Div ( t1 , t2 ) when equal_syntax t1 t2 ->
(* [t / t = 1] *)
(* [t / t = 1] *)
one
one
@ -679,6 +741,9 @@ module Term = struct
t
t
(* defend in depth against exceptions *)
let simplify_shallow t = Z . protect simplify_shallow_ t | > Option . value ~ default : ( Const Q . undef )
(* * more or less syntactic attempt at detecting when an arbitrary term is a linear formula; call
(* * more or less syntactic attempt at detecting when an arbitrary term is a linear formula; call
{ ! Atom . eval_term } first for best results * )
{ ! Atom . eval_term } first for best results * )
let linearize t =
let linearize t =