[sledge] Remove the redundancy of both < and >= terms

Summary: It is not necessary to have both < and >=, and similarly for <= and >.

Reviewed By: bennostein

Differential Revision: D17665232

fbshipit-source-id: 01b3511f5
master
Josh Berdine 5 years ago committed by Facebook Github Bot
parent cae993aae0
commit 3bbb05216f

@ -35,8 +35,6 @@ module rec T : sig
(* binary: comparison *) (* binary: comparison *)
| Eq | Eq
| Dq | Dq
| Gt
| Ge
| Lt | Lt
| Le | Le
| Ord | Ord
@ -93,8 +91,6 @@ and T0 : sig
| App of {op: t; arg: t} | App of {op: t; arg: t}
| Eq | Eq
| Dq | Dq
| Gt
| Ge
| Lt | Lt
| Le | Le
| Ord | Ord
@ -132,8 +128,6 @@ end = struct
| App of {op: t; arg: t} | App of {op: t; arg: t}
| Eq | Eq
| Dq | Dq
| Gt
| Ge
| Lt | Lt
| Le | Le
| Ord | Ord
@ -214,8 +208,6 @@ let rec pp ?is_x fs term =
| Float {data} -> pf "%s" data | Float {data} -> pf "%s" data
| Eq -> pf "=" | Eq -> pf "="
| Dq -> pf "@<1>≠" | Dq -> pf "@<1>≠"
| Gt -> pf ">"
| Ge -> pf "@<1>≥"
| Lt -> pf "<" | Lt -> pf "<"
| Le -> pf "@<1>≤" | Le -> pf "@<1>≤"
| Ord -> pf "ord" | Ord -> pf "ord"
@ -373,8 +365,7 @@ let invariant ?(partial = false) e =
assert (Typ.convertible src dst) assert (Typ.convertible src dst)
| Add _ -> assert_polynomial e |> Fn.id | Add _ -> assert_polynomial e |> Fn.id
| Mul _ -> assert_monomial e |> Fn.id | Mul _ -> assert_monomial e |> Fn.id
| Eq | Dq | Gt | Ge | Lt | Le | Div | Rem | And | Or | Xor | Shl | Lshr | Eq | Dq | Lt | Le | Div | Rem | And | Or | Xor | Shl | Lshr | Ashr ->
|Ashr ->
assert_arity 2 assert_arity 2
| Concat {args} -> assert (Vector.length args <> 1) | Concat {args} -> assert (Vector.length args <> 1)
| Splat {siz} -> ( | Splat {siz} -> (
@ -558,16 +549,6 @@ let simp_convert ~unsigned dst src arg =
integer (Z.extract ~unsigned (min m n) data) integer (Z.extract ~unsigned (min m n) data)
| _ -> App {op= Convert {unsigned; dst; src}; arg} | _ -> App {op= Convert {unsigned; dst; src}; arg}
let simp_gt x y =
match (x, y) with
| Integer {data= i}, Integer {data= j} -> bool (Z.gt i j)
| _ -> App {op= App {op= Gt; arg= x}; arg= y}
let simp_ge x y =
match (x, y) with
| Integer {data= i}, Integer {data= j} -> bool (Z.geq i j)
| _ -> App {op= App {op= Ge; arg= x}; arg= y}
let simp_lt x y = let simp_lt x y =
match (x, y) with match (x, y) with
| Integer {data= i}, Integer {data= j} -> bool (Z.lt i j) | Integer {data= i}, Integer {data= j} -> bool (Z.lt i j)
@ -776,7 +757,7 @@ let rec simp_or x y =
| _ -> App {op= App {op= Or; arg= x}; arg= y} | _ -> App {op= App {op= Or; arg= x}; arg= y}
let rec is_boolean = function let rec is_boolean = function
| App {op= App {op= Eq | Dq | Gt | Ge | Lt | Le}} | App {op= App {op= Eq | Dq | Lt | Le}}
|App {op= Convert {dst= Integer {bits= 1}}} -> |App {op= Convert {dst= Integer {bits= 1}}} ->
true true
| App | App
@ -792,14 +773,10 @@ let rec simp_not term =
| App {op= App {op= Eq; arg= x}; arg= y} -> simp_dq x y | App {op= App {op= Eq; arg= x}; arg= y} -> simp_dq x y
(* ¬(x ≠ y) ==> x = y *) (* ¬(x ≠ y) ==> x = y *)
| App {op= App {op= Dq; arg= x}; arg= y} -> simp_eq x y | App {op= App {op= Dq; arg= x}; arg= y} -> simp_eq x y
(* ¬(x > y) ==> x <= y *) (* ¬(x < y) ==> y <= x *)
| App {op= App {op= Gt; arg= x}; arg= y} -> simp_le x y | App {op= App {op= Lt; arg= x}; arg= y} -> simp_le y x
(* ¬(x >= y) ==> x < y *) (* ¬(x <= y) ==> y < x *)
| App {op= App {op= Ge; arg= x}; arg= y} -> simp_lt x y | App {op= App {op= Le; arg= x}; arg= y} -> simp_lt y x
(* ¬(x < y) ==> x >= y *)
| App {op= App {op= Lt; arg= x}; arg= y} -> simp_ge x y
(* ¬(x <= y) ==> x > y *)
| App {op= App {op= Le; arg= x}; arg= y} -> simp_gt x y
(* ¬(x ≠ nan ∧ y ≠ nan) ==> x = nan y = nan *) (* ¬(x ≠ nan ∧ y ≠ nan) ==> x = nan y = nan *)
| App {op= App {op= Ord; arg= x}; arg= y} -> simp_uno x y | App {op= App {op= Ord; arg= x}; arg= y} -> simp_uno x y
(* ¬(x = nan y = nan) ==> x ≠ nan ∧ y ≠ nan *) (* ¬(x = nan y = nan) ==> x ≠ nan ∧ y ≠ nan *)
@ -917,8 +894,6 @@ let app1 ?(partial = false) op arg =
( match (op, arg) with ( match (op, arg) with
| App {op= Eq; arg= x}, y -> simp_eq x y | App {op= Eq; arg= x}, y -> simp_eq x y
| App {op= Dq; arg= x}, y -> simp_dq x y | App {op= Dq; arg= x}, y -> simp_dq x y
| App {op= Gt; arg= x}, y -> simp_gt x y
| App {op= Ge; arg= x}, y -> simp_ge x y
| App {op= Lt; arg= x}, y -> simp_lt x y | App {op= Lt; arg= x}, y -> simp_lt x y
| App {op= Le; arg= x}, y -> simp_le x y | App {op= Le; arg= x}, y -> simp_le x y
| App {op= Ord; arg= x}, y -> simp_ord x y | App {op= Ord; arg= x}, y -> simp_ord x y
@ -988,8 +963,6 @@ let simp_splat byt siz =
let splat ~byt ~siz = simp_splat byt siz |> check invariant let splat ~byt ~siz = simp_splat byt siz |> check invariant
let eq = app2 Eq let eq = app2 Eq
let dq = app2 Dq let dq = app2 Dq
let gt = app2 Gt
let ge = app2 Ge
let lt = app2 Lt let lt = app2 Lt
let le = app2 Le let le = app2 Le
let ord = app2 Ord let ord = app2 Ord
@ -1065,14 +1038,10 @@ let rec of_exp (e : Exp.t) =
select ~rcd:(of_exp arg) ~idx:(integer (Z.of_int idx)) select ~rcd:(of_exp arg) ~idx:(integer (Z.of_int idx))
| Ap2 (Eq, _, x, y) -> eq (of_exp x) (of_exp y) | Ap2 (Eq, _, x, y) -> eq (of_exp x) (of_exp y)
| Ap2 (Dq, _, x, y) -> dq (of_exp x) (of_exp y) | Ap2 (Dq, _, x, y) -> dq (of_exp x) (of_exp y)
| Ap2 (Gt, _, x, y) -> gt (of_exp x) (of_exp y) | Ap2 (Lt, _, x, y) | Ap2 (Gt, _, y, x) -> lt (of_exp x) (of_exp y)
| Ap2 (Ge, _, x, y) -> ge (of_exp x) (of_exp y) | Ap2 (Le, _, x, y) | Ap2 (Ge, _, y, x) -> le (of_exp x) (of_exp y)
| Ap2 (Lt, _, x, y) -> lt (of_exp x) (of_exp y) | Ap2 (Ult, typ, x, y) | Ap2 (Ugt, typ, y, x) -> unsigned lt typ x y
| Ap2 (Le, _, x, y) -> le (of_exp x) (of_exp y) | Ap2 (Ule, typ, x, y) | Ap2 (Uge, typ, y, x) -> unsigned le typ x y
| Ap2 (Ugt, typ, x, y) -> unsigned gt typ x y
| Ap2 (Uge, typ, x, y) -> unsigned ge typ x y
| Ap2 (Ult, typ, x, y) -> unsigned lt typ x y
| Ap2 (Ule, typ, x, y) -> unsigned le typ x y
| Ap2 (Ord, _, x, y) -> ord (of_exp x) (of_exp y) | Ap2 (Ord, _, x, y) -> ord (of_exp x) (of_exp y)
| Ap2 (Uno, _, x, y) -> uno (of_exp x) (of_exp y) | Ap2 (Uno, _, x, y) -> uno (of_exp x) (of_exp y)
| Ap2 (Add, _, x, y) -> add (of_exp x) (of_exp y) | Ap2 (Add, _, x, y) -> add (of_exp x) (of_exp y)

@ -37,8 +37,6 @@ and t = private
(** Application of function symbol to argument, curried *) (** Application of function symbol to argument, curried *)
| Eq (** Equal test *) | Eq (** Equal test *)
| Dq (** Disequal test *) | Dq (** Disequal test *)
| Gt (** Greater-than test *)
| Ge (** Greater-than-or-equal test *)
| Lt (** Less-than test *) | Lt (** Less-than test *)
| Le (** Less-than-or-equal test *) | Le (** Less-than-or-equal test *)
| Ord (** Ordered test (neither arg is nan) *) | Ord (** Ordered test (neither arg is nan) *)
@ -145,8 +143,6 @@ val rational : Q.t -> t
val float : string -> t val float : string -> t
val eq : t -> t -> t val eq : t -> t -> t
val dq : t -> t -> t val dq : t -> t -> t
val gt : t -> t -> t
val ge : t -> t -> t
val lt : t -> t -> t val lt : t -> t -> t
val le : t -> t -> t val le : t -> t -> t
val ord : t -> t -> t val ord : t -> t -> t

@ -16,8 +16,6 @@ let%test_module _ =
let ( * ) = Term.mul let ( * ) = Term.mul
let ( = ) = Term.eq let ( = ) = Term.eq
let ( != ) = Term.dq let ( != ) = Term.dq
let ( > ) = Term.gt
let ( >= ) = Term.ge
let ( < ) = Term.lt let ( < ) = Term.lt
let ( <= ) = Term.le let ( <= ) = Term.le
let ( && ) = Term.and_ let ( && ) = Term.and_
@ -235,12 +233,12 @@ let%test_module _ =
[%expect {| ((13 × %z_2 + -42) = (3 × %y_1 + 13 × %z_2)) |}] [%expect {| ((13 × %z_2 + -42) = (3 × %y_1 + 13 × %z_2)) |}]
let%expect_test _ = let%expect_test _ =
pp ~~(y > !2 && z <= !3) ; pp ~~(!2 < y && z <= !3) ;
[%expect {| ((%y_1 2) || (%z_2 > 3)) |}] [%expect {| ((%y_1 2) || (3 < %z_2)) |}]
let%expect_test _ = let%expect_test _ =
pp ~~(y >= !2 || z < !3) ; pp ~~(!2 <= y || z < !3) ;
[%expect {| ((%y_1 < 2) && (%z_2 3)) |}] [%expect {| ((%y_1 < 2) && (3 %z_2)) |}]
let%expect_test _ = let%expect_test _ =
pp Term.(eq z null) ; pp Term.(eq z null) ;

Loading…
Cancel
Save