@ -63,6 +63,8 @@ module Symbol = struct
let is_unsigned : t -> bool = fun x -> x . unsigned
let is_unsigned : t -> bool = fun x -> x . unsigned
end
end
exception Symbol_not_found of Symbol . t
module SymbolMap = struct
module SymbolMap = struct
include PrettyPrintable . MakePPMap ( Symbol )
include PrettyPrintable . MakePPMap ( Symbol )
@ -244,16 +246,10 @@ module SymLinear = struct
let is_empty : t -> bool = fun x -> M . is_empty x
let is_empty : t -> bool = fun x -> M . is_empty x
let remove : Symbol . t -> t -> t = fun s x -> M . remove s x
let singleton_one : Symbol . t -> t = fun s -> M . singleton s NonZeroInt . one
let singleton_one : Symbol . t -> t = fun s -> M . singleton s NonZeroInt . one
let singleton_minus_one : Symbol . t -> t = fun s -> M . singleton s NonZeroInt . minus_one
let singleton_minus_one : Symbol . t -> t = fun s -> M . singleton s NonZeroInt . minus_one
let find : Symbol . t -> t -> NonZeroInt . t = fun s x -> M . find s x
let use_symbol : Symbol . t -> t -> bool = fun s x -> M . mem s x
let is_le_zero : t -> bool =
let is_le_zero : t -> bool =
fun x -> M . for_all ( fun s v -> Symbol . is_unsigned s && NonZeroInt . is_negative v ) x
fun x -> M . for_all ( fun s v -> Symbol . is_unsigned s && NonZeroInt . is_negative v ) x
@ -310,23 +306,6 @@ module SymLinear = struct
M . union plus_coeff x y
M . union plus_coeff x y
(* * [se1] * [c] + [se2] *)
let mult_const_plus : t -> NonZeroInt . t -> t -> t =
fun se1 c se2 ->
let f _ ( coeff1 : NonZeroInt . t option ) ( coeff2 : NonZeroInt . t option ) =
match ( coeff1 , coeff2 ) with
| None , None ->
None
| None , ( Some _ as some_v ) ->
some_v
| Some v , None ->
Some NonZeroInt . ( v * c )
| Some v1 , Some v2 ->
NonZeroInt . ( v1 * c | > plus v2 )
in
M . merge f se1 se2
let mult_const : NonZeroInt . t -> t -> t = fun n x -> M . map ( NonZeroInt . ( * ) n ) x
let mult_const : NonZeroInt . t -> t -> t = fun n x -> M . map ( NonZeroInt . ( * ) n ) x
let exact_div_const_exn : t -> NonZeroInt . t -> t =
let exact_div_const_exn : t -> NonZeroInt . t -> t =
@ -344,6 +323,11 @@ module SymLinear = struct
None
None
let fold m ~ init ~ f =
let f s coeff acc = f acc s coeff in
M . fold f m init
let get_one_symbol_opt : t -> Symbol . t option = one_symbol_of_coeff NonZeroInt . one
let get_one_symbol_opt : t -> Symbol . t option = one_symbol_of_coeff NonZeroInt . one
let get_mone_symbol_opt : t -> Symbol . t option = one_symbol_of_coeff NonZeroInt . minus_one
let get_mone_symbol_opt : t -> Symbol . t option = one_symbol_of_coeff NonZeroInt . minus_one
@ -385,6 +369,12 @@ module SymLinear = struct
let int_ub x = if is_le_zero x then Some 0 else None
let int_ub x = if is_le_zero x then Some 0 else None
end
end
module BoundEnd = struct
type t = LowerBound | UpperBound
let neg = function LowerBound -> UpperBound | UpperBound -> LowerBound
end
module Bound = struct
module Bound = struct
type sign = Plus | Minus [ @@ deriving compare ]
type sign = Plus | Minus [ @@ deriving compare ]
@ -445,6 +435,8 @@ module Bound = struct
F . fprintf fmt " %a(%d, %a) " MinMax . pp m d Symbol . pp x
F . fprintf fmt " %a(%d, %a) " MinMax . pp m d Symbol . pp x
let of_bound_end = function BoundEnd . LowerBound -> MInf | BoundEnd . UpperBound -> PInf
let of_int : int -> t = fun n -> Linear ( n , SymLinear . empty )
let of_int : int -> t = fun n -> Linear ( n , SymLinear . empty )
let minus_one = of_int ( - 1 )
let minus_one = of_int ( - 1 )
@ -462,14 +454,6 @@ module Bound = struct
true
true
let eq_symbol : Symbol . t -> t -> bool =
fun s -> function
| Linear ( 0 , se ) -> (
match SymLinear . get_one_symbol_opt se with None -> false | Some s' -> Symbol . equal s s' )
| _ ->
false
let lift_symlinear : ( SymLinear . t -> ' a option ) -> t -> ' a option =
let lift_symlinear : ( SymLinear . t -> ' a option ) -> t -> ' a option =
fun f -> function Linear ( 0 , se ) -> f se | _ -> None
fun f -> function Linear ( 0 , se ) -> f se | _ -> None
@ -504,103 +488,6 @@ module Bound = struct
else MinMax ( c , sign , m , d , s )
else MinMax ( c , sign , m , d , s )
let use_symbol : Symbol . t -> t -> bool =
fun s -> function
| PInf | MInf ->
false
| Linear ( _ , se ) ->
SymLinear . use_symbol s se
| MinMax ( _ , _ , _ , _ , s' ) ->
Symbol . equal s s'
type subst_pos_t = SubstLowerBound | SubstUpperBound
(* [subst1] substitutes [s] in [x0] to [y0].
- If the precise result is expressible by the domain , the
function returns it .
- If the precise result is not expressible , but a compromized
value , with regard to [ subst_pos ] , is expressible by the domain ,
the function returns the compromized value .
- Otherwise , it returns the default values , - oo for lower bound and
+ oo for upper bound . * )
let subst1
: subst_pos : subst_pos_t -> t bottom_lifted -> Symbol . t -> t bottom_lifted -> t bottom_lifted =
let get_default = function SubstLowerBound -> MInf | SubstUpperBound -> PInf in
let subst1_linears c1 se1 s c2 se2 =
let coeff = SymLinear . find s se1 in
let c' = c1 + ( ( coeff :> int ) * c2 ) in
let se1 = SymLinear . remove s se1 in
let se' = SymLinear . mult_const_plus se2 coeff se1 in
Linear ( c' , se' )
in
let subst1_non_bottom ~ subst_pos x s y =
match ( x , y ) with
| Linear ( c1 , se1 ) , Linear ( c2 , se2 ) ->
subst1_linears c1 se1 s c2 se2
| Linear ( c1 , se1 ) , MinMax ( c2 , sign , min_max , d2 , s2 ) when SymLinear . is_one_symbol se1 ->
assert ( Symbol . equal ( SymLinear . get_one_symbol se1 ) s ) ;
MinMax ( c1 + c2 , sign , min_max , d2 , s2 )
| Linear ( c1 , se1 ) , MinMax ( c2 , sign , min_max , d2 , s2 ) when SymLinear . is_mone_symbol se1 ->
assert ( Symbol . equal ( SymLinear . get_mone_symbol se1 ) s ) ;
MinMax ( c1 - c2 , Sign . neg sign , min_max , d2 , s2 )
| Linear ( c1 , se1 ) , MinMax ( c2 , bop , min_max , d2 , _ ) ->
let coeff = SymLinear . find s se1 in
let compromisable =
match ( subst_pos , min_max ) with
| SubstLowerBound , Max | SubstUpperBound , Min ->
NonZeroInt . is_positive coeff
| SubstUpperBound , Max | SubstLowerBound , Min ->
NonZeroInt . is_negative coeff
in
if compromisable then subst1_linears c1 se1 s ( Sign . eval_int bop c2 d2 ) SymLinear . empty
else get_default subst_pos
| MinMax ( _ , Plus , Min , _ , _ ) , MInf ->
MInf
| MinMax ( _ , Minus , Min , _ , _ ) , MInf ->
PInf
| MinMax ( _ , Plus , Max , _ , _ ) , PInf ->
PInf
| MinMax ( _ , Minus , Max , _ , _ ) , PInf ->
MInf
| MinMax ( c , sign , Min , d , _ ) , PInf | MinMax ( c , sign , Max , d , _ ) , MInf ->
of_int ( Sign . eval_int sign c d )
| MinMax ( c1 , sign , min_max , d1 , _ ) , Linear ( c2 , se ) when SymLinear . is_zero se ->
of_int ( Sign . eval_int sign c1 ( MinMax . eval_int min_max d1 c2 ) )
| MinMax ( c , sign , m , d , _ ) , _ when is_one_symbol y ->
mk_MinMax ( c , sign , m , d , get_one_symbol y )
| MinMax ( c , sign , m , d , _ ) , _ when is_mone_symbol y ->
mk_MinMax ( c , Sign . neg sign , MinMax . neg m , - d , get_mone_symbol y )
| MinMax ( c1 , sign1 , min_max , d1 , _ ) , MinMax ( c2 , Plus , min_max' , d2 , s' )
when MinMax . equal min_max min_max' ->
let c = Sign . eval_int sign1 c1 c2 in
let d = MinMax . eval_int min_max ( d1 - c2 ) d2 in
mk_MinMax ( c , sign1 , min_max , d , s' )
| MinMax ( c1 , sign1 , min_max , d1 , _ ) , MinMax ( c2 , Minus , min_max' , d2 , s' )
when MinMax . equal ( MinMax . neg min_max ) min_max' ->
let c = Sign . eval_int sign1 c1 c2 in
let d = MinMax . eval_int min_max' ( c2 - d1 ) d2 in
mk_MinMax ( c , Sign . neg sign1 , min_max' , d , s' )
| _ ->
get_default subst_pos
in
fun ~ subst_pos x0 s y0 ->
match ( x0 , y0 ) with
| Bottom , _ ->
x0
| NonBottom x , _ when eq_symbol s x ->
y0
| NonBottom x , _ when not ( use_symbol s x ) ->
x0
| NonBottom _ , Bottom ->
NonBottom ( get_default subst_pos )
| NonBottom x , NonBottom y ->
NonBottom ( subst1_non_bottom ~ subst_pos x s y )
let int_ub_of_minmax = function
let int_ub_of_minmax = function
| MinMax ( c , Plus , Min , d , _ ) ->
| MinMax ( c , Plus , Min , d , _ ) ->
Some ( c + d )
Some ( c + d )
@ -627,6 +514,13 @@ module Bound = struct
assert false
assert false
let int_of_minmax = function
| BoundEnd . LowerBound ->
int_lb_of_minmax
| BoundEnd . UpperBound ->
int_ub_of_minmax
let int_lb = function
let int_lb = function
| MInf ->
| MInf ->
None
None
@ -859,26 +753,6 @@ module Bound = struct
fun x -> match x with Linear ( c , y ) when SymLinear . is_zero y -> Some c | _ -> None
fun x -> match x with Linear ( c , y ) when SymLinear . is_zero y -> Some c | _ -> None
(* substitution symbols in ``x'' with respect to ``map'' *)
let subst : subst_pos : subst_pos_t -> t -> t bottom_lifted SymbolMap . t -> t bottom_lifted =
fun ~ subst_pos x map ->
let subst_helper s y x =
let y' =
match y with
| Bottom ->
Bottom
| NonBottom r ->
NonBottom ( if Symbol . is_unsigned s then ub ~ default : r zero r else r )
in
subst1 ~ subst_pos x s y'
in
SymbolMap . fold subst_helper map ( NonBottom x )
let subst_lb x map = subst ~ subst_pos : SubstLowerBound x map
let subst_ub x map = subst ~ subst_pos : SubstUpperBound x map
let plus_common : f : ( t -> t -> t ) -> t -> t -> t =
let plus_common : f : ( t -> t -> t ) -> t -> t -> t =
fun ~ f x y ->
fun ~ f x y ->
match ( x , y ) with
match ( x , y ) with
@ -922,8 +796,10 @@ module Bound = struct
PInf )
PInf )
let mult_const : default : t -> NonZeroInt . t -> t -> t =
let plus = function BoundEnd . LowerBound -> plus_l | BoundEnd . UpperBound -> plus_u
fun ~ default n x ->
let mult_const : BoundEnd . t -> NonZeroInt . t -> t -> t =
fun bound_end n x ->
match x with
match x with
| MInf ->
| MInf ->
if NonZeroInt . is_positive n then MInf else PInf
if NonZeroInt . is_positive n then MInf else PInf
@ -931,13 +807,19 @@ module Bound = struct
if NonZeroInt . is_positive n then PInf else MInf
if NonZeroInt . is_positive n then PInf else MInf
| Linear ( c , x' ) ->
| Linear ( c , x' ) ->
Linear ( c * ( n :> int ) , SymLinear . mult_const n x' )
Linear ( c * ( n :> int ) , SymLinear . mult_const n x' )
| _ ->
| MinMax _ ->
default
let int_bound =
let bound_end' =
if NonZeroInt . is_positive n then bound_end else BoundEnd . neg bound_end
in
int_of_minmax bound_end' x
in
match int_bound with Some i -> of_int ( i * ( n :> int ) ) | None -> of_bound_end bound_end
let mult_const_l = mult_const ~ default : MInf
let mult_const_l = mult_const BoundEnd . LowerBound
let mult_const_u = mult_const ~ default : PInf
let mult_const_u = mult_const BoundEnd . UpperBound
let neg : t -> t = function
let neg : t -> t = function
| MInf ->
| MInf ->
@ -989,6 +871,119 @@ module Bound = struct
let is_not_infty : t -> bool = function MInf | PInf -> false | _ -> true
let is_not_infty : t -> bool = function MInf | PInf -> false | _ -> true
let lift1 : ( t -> t ) -> t bottom_lifted -> t bottom_lifted =
fun f x -> match x with Bottom -> Bottom | NonBottom x -> NonBottom ( f x )
let lift2 : ( t -> t -> t ) -> t bottom_lifted -> t bottom_lifted -> t bottom_lifted =
fun f x y ->
match ( x , y ) with
| Bottom , _ | _ , Bottom ->
Bottom
| NonBottom x , NonBottom y ->
NonBottom ( f x y )
(* * Substitutes ALL symbols in [x] with respect to [map]. Throws [Symbol_not_found] if a symbol in [x] can't be found in [map]. Under/over-Approximate as good as possible according to [subst_pos]. *)
let subst_exn : subst_pos : BoundEnd . t -> t -> t bottom_lifted SymbolMap . t -> t bottom_lifted =
fun ~ subst_pos x map ->
let get_exn s =
match SymbolMap . find s map with
| NonBottom x when Symbol . is_unsigned s ->
NonBottom ( ub ~ default : x zero x )
| x ->
x
in
let get_mult_const s coeff =
try
if NonZeroInt . is_one coeff then get_exn s
else if NonZeroInt . is_minus_one coeff then get_exn s | > lift1 neg
else
match SymbolMap . find s map with
| Bottom ->
Bottom
| NonBottom x ->
let x = mult_const subst_pos coeff x in
if Symbol . is_unsigned s then NonBottom ( ub ~ default : x zero x ) else NonBottom x
with Caml . Not_found ->
(* For unsigned symbols, we can over/under-approximate with zero depending on [subst_pos] and the sign of the coefficient. *)
match ( Symbol . is_unsigned s , subst_pos , NonZeroInt . is_positive coeff ) with
| true , BoundEnd . LowerBound , true | true , BoundEnd . UpperBound , false ->
NonBottom zero
| _ ->
raise ( Symbol_not_found s )
in
match x with
| MInf | PInf ->
NonBottom x
| Linear ( c , se ) ->
SymLinear . fold se ~ init : ( NonBottom ( of_int c ) ) ~ f : ( fun acc s coeff ->
lift2 ( plus subst_pos ) acc ( get_mult_const s coeff ) )
| MinMax ( c , sign , min_max , d , s ) ->
match get_exn s with
| Bottom ->
Bottom
| exception Caml . Not_found -> (
match int_of_minmax subst_pos x with
| Some i ->
NonBottom ( of_int i )
| None ->
raise ( Symbol_not_found s ) )
| NonBottom x' ->
let res =
match ( sign , min_max , x' ) with
| Plus , Min , MInf | Minus , Max , PInf ->
MInf
| Plus , Max , PInf | Minus , Min , MInf ->
PInf
| sign , Min , PInf | sign , Max , MInf ->
of_int ( Sign . eval_int sign c d )
| _ , _ , Linear ( c2 , se )
-> (
if SymLinear . is_zero se then
of_int ( Sign . eval_int sign c ( MinMax . eval_int min_max d c2 ) )
else if SymLinear . is_one_symbol se then
mk_MinMax
( Sign . eval_int sign c c2 , sign , min_max , d - c2 , SymLinear . get_one_symbol se )
else if SymLinear . is_mone_symbol se then
mk_MinMax
( Sign . eval_int sign c c2
, Sign . neg sign
, MinMax . neg min_max
, c2 - d
, SymLinear . get_mone_symbol se )
else
match int_of_minmax subst_pos x with
| Some i ->
of_int i
| None ->
of_bound_end subst_pos )
| _ , _ , MinMax ( c2 , sign2 , min_max2 , d2 , s2 ) ->
match ( min_max , sign2 , min_max2 ) with
| Min , Plus , Min | Max , Plus , Max ->
let c' = Sign . eval_int sign c c2 in
let d' = MinMax . eval_int min_max ( d - c2 ) d2 in
mk_MinMax ( c' , sign , min_max , d' , s2 )
| Min , Minus , Max | Max , Minus , Min ->
let c' = Sign . eval_int sign c c2 in
let d' = MinMax . eval_int min_max2 ( c2 - d ) d2 in
mk_MinMax ( c' , Sign . neg sign , min_max2 , d' , s2 )
| _ ->
let bound_end =
match sign with Plus -> subst_pos | Minus -> BoundEnd . neg subst_pos
in
of_int
( Sign . eval_int sign c
( MinMax . eval_int min_max d
( int_of_minmax bound_end x' | > Option . value ~ default : d ) ) )
in
NonBottom res
let subst_lb_exn x map = subst_exn ~ subst_pos : BoundEnd . LowerBound x map
let subst_ub_exn x map = subst_exn ~ subst_pos : BoundEnd . UpperBound x map
end
end
type ( ' c , ' s ) valclass = Constant of ' c | Symbolic of ' s | ValTop
type ( ' c , ' s ) valclass = Constant of ' c | Symbolic of ' s | ValTop
@ -1023,8 +1018,8 @@ module NonNegativeBound = struct
Constant ( NonNegativeInt . of_int_exn c )
Constant ( NonNegativeInt . of_int_exn c )
let subst b map =
let subst _exn b map =
match Bound . subst_ub b map with
match Bound . subst_ub _exn b map with
| Bottom ->
| Bottom ->
Constant NonNegativeInt . zero
Constant NonNegativeInt . zero
| NonBottom b ->
| NonBottom b ->
@ -1038,7 +1033,8 @@ module type NonNegativeSymbol = sig
val int_ub : t -> NonNegativeInt . t option
val int_ub : t -> NonNegativeInt . t option
val subst : t -> Bound . t bottom_lifted SymbolMap . t -> ( NonNegativeInt . t , t ) valclass
val subst_exn : t -> Bound . t bottom_lifted SymbolMap . t -> ( NonNegativeInt . t , t ) valclass
(* * may throw Symbol_not_found *)
val pp : F . formatter -> t -> unit
val pp : F . formatter -> t -> unit
end
end
@ -1254,7 +1250,7 @@ module MakePolynomial (S : NonNegativeSymbol) = struct
let rec subst { const ; terms } map =
let rec subst { const ; terms } map =
M . fold
M . fold
( fun s p acc ->
( fun s p acc ->
match S . subst s map with
match S . subst _exn s map with
| Constant c -> (
| Constant c -> (
match PositiveInt . of_int ( c :> int ) with
match PositiveInt . of_int ( c :> int ) with
| None ->
| None ->
@ -1267,7 +1263,9 @@ module MakePolynomial (S : NonNegativeSymbol) = struct
if is_zero p then acc else raise ReturnTop
if is_zero p then acc else raise ReturnTop
| Symbolic s ->
| Symbolic s ->
let p = subst p map in
let p = subst p map in
mult_symb p s | > plus acc )
mult_symb p s | > plus acc
| exception Symbol_not_found _ ->
raise ReturnTop )
terms ( of_non_negative_int const )
terms ( of_non_negative_int const )
in
in
fun p map -> match subst p map with p -> NonTop p | exception ReturnTop -> Top
fun p map -> match subst p map with p -> NonTop p | exception ReturnTop -> Top
@ -1379,11 +1377,14 @@ module ItvPure = struct
let subst : t -> Bound . t bottom_lifted SymbolMap . t -> t bottom_lifted =
let subst : t -> Bound . t bottom_lifted SymbolMap . t -> t bottom_lifted =
fun ( l , u ) map ->
fun ( l , u ) map ->
match ( Bound . subst_lb l map , Bound . subst_ub u map ) with
match ( Bound . subst_lb _exn l map , Bound . subst_ub _exn u map ) with
| NonBottom l , NonBottom u ->
| NonBottom l , NonBottom u ->
NonBottom ( l , u )
NonBottom ( l , u )
| _ ->
| _ ->
Bottom
Bottom
| exception Symbol_not_found _ ->
(* For now, let's be VERY aggressive. Under-approximate unknown symbols with Bottom. *)
Bottom
let ( < = ) : lhs : t -> rhs : t -> bool =
let ( < = ) : lhs : t -> rhs : t -> bool =