[sledge] Improve printing

Summary: Simplify output of arithmetic terms, and omit trivial pure part of Sh.

Reviewed By: jvillard

Differential Revision: D24371082

fbshipit-source-id: 91f2117d3
master
Josh Berdine 4 years ago committed by Facebook GitHub Bot
parent 3b4c7ab41f
commit 4a59f053fa

@ -41,8 +41,8 @@ struct
(Sexplib.Conv.pair_of_sexp elt_of_sexp Mul.t_of_sexp)
sexp)
let pp sep pp_elt fs s =
List.pp sep pp_elt fs (Iter.to_list (M.to_iter s))
let pp ?pre ?suf sep pp_elt fs s =
List.pp ?pre ?suf sep pp_elt fs (Iter.to_list (M.to_iter s))
let empty = M.empty
let of_ x i = if Mul.equal Mul.zero i then empty else M.singleton x i

@ -28,7 +28,13 @@ module type S = sig
val hash_fold_t : elt Hash.folder -> t Hash.folder
val sexp_of_t : t -> Sexp.t
val t_of_sexp : (Sexp.t -> elt) -> Sexp.t -> t
val pp : (unit, unit) fmt -> (elt * mul) pp -> t pp
val pp :
?pre:(unit, unit) fmt
-> ?suf:(unit, unit) fmt
-> (unit, unit) fmt
-> (elt * mul) pp
-> t pp
(* constructors *)

@ -41,7 +41,9 @@ module Representation (Trm : INDETERMINATE) = struct
(Prod.map_counts ~f:Int.neg den)
in
let num, den = num_den power_product in
Format.fprintf ppf "@[<2>(%a%a)@]" pp_num num pp_den den
if Prod.is_singleton num && Prod.is_empty den then
Format.fprintf ppf "@[<2>%a@]" pp_num num
else Format.fprintf ppf "@[<2>(%a%a)@]" pp_num num pp_den den
(** [one] is the empty product Πᵢ₌₁⁰ xᵢ^pᵢ *)
let one = Prod.empty
@ -86,10 +88,16 @@ module Representation (Trm : INDETERMINATE) = struct
else
let pp_coeff_mono ppf (m, c) =
if Mono.equal_one m then Trace.pp_styled `Magenta "%a" ppf Q.pp c
else
Format.fprintf ppf "%a @<2>× %a" Q.pp c (Mono.ppx strength) m
else if Q.equal Q.one c then
Format.fprintf ppf "%a" (Mono.ppx strength) m
else Format.fprintf ppf "%a@<1>×%a" Q.pp c (Mono.ppx strength) m
in
Format.fprintf ppf "@[<2>(%a)@]" (Sum.pp "@ + " pp_coeff_mono) poly
if Sum.is_singleton poly then
Format.fprintf ppf "@[<2>%a@]" (Sum.pp "@ + " pp_coeff_mono) poly
else
Format.fprintf ppf "@[<2>(%a)@]"
(Sum.pp "@ + " pp_coeff_mono)
poly
let mono_invariant mono =
let@ () = Invariant.invariant [%here] mono [%sexp_of: Mono.t] in

@ -314,6 +314,10 @@ let ppx_f strength fs fml =
let pp_t = Trm.ppx strength in
let rec pp fs fml =
let pf fmt = pp_boxed fs fmt in
let pp_arith op x =
let a, c = Arith.split_const (Arith.trm x) in
pf "(%a@ @<2>%s %a)" Q.pp (Q.neg c) op (Arith.ppx strength) a
in
let pp_join sep pos neg =
pf "(%a%t%a)" (Fmls.pp ~sep pp) pos
(fun ppf ->
@ -327,10 +331,10 @@ let ppx_f strength fs fml =
| Not Tt -> pf "ff"
| Eq (x, y) -> pf "(%a@ = %a)" pp_t x pp_t y
| Not (Eq (x, y)) -> pf "(%a@ @<2>≠ %a)" pp_t x pp_t y
| Eq0 x -> pf "(0 = %a)" pp_t x
| Not (Eq0 x) -> pf "(0 @<2>≠ %a)" pp_t x
| Pos x -> pf "(0 < %a)" pp_t x
| Not (Pos x) -> pf "(0 @<2>≥ %a)" pp_t x
| Eq0 x -> pp_arith "=" x
| Not (Eq0 x) -> pp_arith "" x
| Pos x -> pp_arith "<" x
| Not (Pos x) -> pp_arith "" x
| Not x -> pf "@<1>¬%a" pp x
| And {pos; neg} -> pp_join "@ @<2>∧ " pos neg
| Or {pos; neg} -> pp_join "@ @<2> " pos neg

@ -210,6 +210,7 @@ let rec pp_ ?var_strength vs parent_xs parent_ctx fs
let first =
if Option.is_some var_strength then
Context.ppx_diff x fs parent_ctx pure ctx
else if Formula.equal Formula.tt pure then true
else (
Format.fprintf fs "@[ %a@]" Formula.pp pure ;
false )

@ -189,8 +189,8 @@ let%test_module _ =
pp_raw r3 ;
[%expect
{|
%z_7 = %u_2 = %v_3 = %w_4 = %x_5 = (1 × (%y_6 × %z_7))
(1 × (%y_6^2 × %z_7)) = %t_1
%z_7 = %u_2 = %v_3 = %w_4 = %x_5 = (%y_6 × %z_7)
(%y_6^2 × %z_7) = %t_1
{sat= true;
rep= [[%t_1 (%y_6^2 × %z_7)];
@ -216,9 +216,7 @@ let%test_module _ =
pp_raw r4 ;
[%expect
{|
(-4 + 1 × (%z_7)) = %y_6
(3 + 1 × (%z_7)) = %w_4
(8 + 1 × (%z_7)) = %x_5
(-4 + %z_7) = %y_6 (3 + %z_7) = %w_4 (8 + %z_7) = %x_5
{sat= true;
rep= [[%w_4 (%z_7 + 3)];
@ -324,7 +322,7 @@ let%test_module _ =
pp_raw r8 ;
[%expect
{|
14 = %y_6 (13 × (%z_7)) = %x_5
14 = %y_6 13×%z_7 = %x_5
{sat= true;
rep= [[%x_5 (13 × %z_7)]; [%y_6 14]; [%z_7 ]; [-1 ]; [0 ]]} |}]
@ -363,11 +361,11 @@ let%test_module _ =
{sat= true;
rep= [[%x_5 (%z_7 + -16)]; [%z_7 ]; [-1 ]; [0 ]]}
(-8 + -1 × (%x_5) + 1 × (%z_7))
(-8 + -1×%x_5 + %z_7)
8
(8 + 1 × (%x_5) + -1 × (%z_7))
(8 + %x_5 + -1×%z_7)
-8 |}]
@ -380,13 +378,13 @@ let%test_module _ =
let%expect_test _ =
pp r11 ;
[%expect {| (-16 + 1 × (%z_7)) = %x_5 |}]
[%expect {| (-16 + %z_7) = %x_5 |}]
let r12 = of_eqs [(!16, z - x); (x + !8 - z, z + !16 + !8 - z)]
let%expect_test _ =
pp r12 ;
[%expect {| (-16 + 1 × (%z_7)) = %x_5 |}]
[%expect {| (-16 + %z_7) = %x_5 |}]
let r13 =
of_eqs
@ -488,7 +486,7 @@ let%test_module _ =
[-1 ];
[0 ]]}
%x_5 = %x_5^ (-1 + 1 × (%y_6)) = %y_6^ |}]
%x_5 = %x_5^ (-1 + %y_6) = %y_6^ |}]
let r19 = of_eqs [(x, y + z); (x, !0); (y, !0)]

@ -154,11 +154,11 @@ let%test_module _ =
pp q' ;
[%expect
{|
%x_6 . %x_6 = %x_6^ (-1 + 1 × (%y_7)) = %y_7^ emp
%x_6 . %x_6 = %x_6^ (-1 + %y_7) = %y_7^ emp
(tt ((-1 + 1 × (%y_7)) = %y_7^)) emp
(tt ((-1 + %y_7) = %y_7^)) emp
(-1 + 1 × (%y_7)) = %y_7^ emp |}]
(-1 + %y_7) = %y_7^ emp |}]
let%expect_test _ =
let q =
@ -185,7 +185,7 @@ let%test_module _ =
( %b_2 . (tt (8,%a_1 = (4,%c_3^4,%b_2))) emp)
)
tt emp * ( ( tt emp) ( (tt (0 %x_6)) emp) )
( ( emp) ( (tt (0 %x_6)) emp) )
( ( emp) ( (0 %x_6) emp) ) |}]
end )

@ -197,7 +197,7 @@ let%test_module _ =
%a_2 = %a0_10
16 = %m_8 = %n_9
(16,%a_2^16,%a1_11) = %a_1
(16 + 1 × (%k_5)) -[ %k_5, 16 )-> 16,%a1_11 |}]
(16 + %k_5) -[ %k_5, 16 )-> 16,%a1_11 |}]
let%expect_test _ =
infer_frame
@ -219,7 +219,7 @@ let%test_module _ =
%a_2 = %a0_10
16 = %m_8 = %n_9
(16,%a_2^16,%a1_11) = %a_1
(16 + 1 × (%k_5)) -[ %k_5, 16 )-> 16,%a1_11 |}]
(16 + %k_5) -[ %k_5, 16 )-> 16,%a1_11 |}]
let seg_split_symbolically =
Sh.star
@ -237,8 +237,7 @@ let%test_module _ =
[%expect
{|
( infer_frame:
%l_6
-[ %l_6, 16 )-> (8 × (%n_9)),%a_2^(16 + -8 × (%n_9)),%a_3
%l_6 -[ %l_6, 16 )-> 8×%n_9,%a_2^(16 + -8×%n_9),%a_3
* ( ( 1 = %n_9 emp)
( 0 = %n_9 emp)
( 2 = %n_9 emp)
@ -254,7 +253,7 @@ let%test_module _ =
( %a_1 = %a_2
2 = %n_9
16 = %m_8
(16 + 1 × (%l_6)) -[ %l_6, 16 )-> 0,%a_3)
(16 + %l_6) -[ %l_6, 16 )-> 0,%a_3)
( %a_3 = _
0 = %n_9
16 = %m_8
@ -271,9 +270,8 @@ let%test_module _ =
[%expect
{|
( infer_frame:
(0 (-2 + 1 × (%n_9)))
%l_6
-[ %l_6, 16 )-> (8 × (%n_9)),%a_2^(16 + -8 × (%n_9)),%a_3
(2 %n_9)
%l_6 -[ %l_6, 16 )-> 8×%n_9,%a_2^(16 + -8×%n_9),%a_3
\- %a_1, %m_8 .
%l_6 -[ %l_6, %m_8 )-> %m_8,%a_1
) infer_frame: |}]

Loading…
Cancel
Save