@ -189,8 +189,8 @@ let%test_module _ =
pp_raw r3 ;
pp_raw r3 ;
[ % expect
[ % expect
{ |
{ |
% z_7 = % u_2 = % v_3 = % w_4 = % x_5 = ( 1 × ( % y_6 × % z_7 ) )
% z_7 = % u_2 = % v_3 = % w_4 = % x_5 = ( % y_6 × % z_7 )
∧ ( 1 × ( % y_6 ^ 2 × % z_7 ) ) = % t_1
∧ ( % y_6 ^ 2 × % z_7 ) = % t_1
{ sat = true ;
{ sat = true ;
rep = [ [ % t_1 ↦ ( % y_6 ^ 2 × % z_7 ) ] ;
rep = [ [ % t_1 ↦ ( % y_6 ^ 2 × % z_7 ) ] ;
@ -216,9 +216,7 @@ let%test_module _ =
pp_raw r4 ;
pp_raw r4 ;
[ % expect
[ % expect
{ |
{ |
( - 4 + 1 × ( % z_7 ) ) = % y_6
( - 4 + % z_7 ) = % y_6 ∧ ( 3 + % z_7 ) = % w_4 ∧ ( 8 + % z_7 ) = % x_5
∧ ( 3 + 1 × ( % z_7 ) ) = % w_4
∧ ( 8 + 1 × ( % z_7 ) ) = % x_5
{ sat = true ;
{ sat = true ;
rep = [ [ % w_4 ↦ ( % z_7 + 3 ) ] ;
rep = [ [ % w_4 ↦ ( % z_7 + 3 ) ] ;
@ -324,7 +322,7 @@ let%test_module _ =
pp_raw r8 ;
pp_raw r8 ;
[ % expect
[ % expect
{ |
{ |
14 = % y_6 ∧ ( 13 × ( % z_7 ) ) = % x_5
14 = % y_6 ∧ 13 × % z_7 = % x_5
{ sat = true ;
{ sat = true ;
rep = [ [ % x_5 ↦ ( 13 × % z_7 ) ] ; [ % y_6 ↦ 14 ] ; [ % z_7 ↦ ] ; [ - 1 ↦ ] ; [ 0 ↦ ] ] } | } ]
rep = [ [ % x_5 ↦ ( 13 × % z_7 ) ] ; [ % y_6 ↦ 14 ] ; [ % z_7 ↦ ] ; [ - 1 ↦ ] ; [ 0 ↦ ] ] } | } ]
@ -363,11 +361,11 @@ let%test_module _ =
{ sat = true ;
{ sat = true ;
rep = [ [ % x_5 ↦ ( % z_7 + - 16 ) ] ; [ % z_7 ↦ ] ; [ - 1 ↦ ] ; [ 0 ↦ ] ] }
rep = [ [ % x_5 ↦ ( % z_7 + - 16 ) ] ; [ % z_7 ↦ ] ; [ - 1 ↦ ] ; [ 0 ↦ ] ] }
( - 8 + - 1 × ( % x_5 ) + 1 × ( % z_7 ) )
( - 8 + - 1 × % x_5 + % z_7 )
8
8
( 8 + 1 × ( % x_5 ) + - 1 × ( % z_7 ) )
( 8 + % x_5 + - 1 × % z_7 )
- 8 | } ]
- 8 | } ]
@ -380,13 +378,13 @@ let%test_module _ =
let % expect_test _ =
let % expect_test _ =
pp r11 ;
pp r11 ;
[ % expect { | ( - 16 + 1 × ( % z_7 ) ) = % x_5 | } ]
[ % expect { | ( - 16 + % z_7 ) = % x_5 | } ]
let r12 = of_eqs [ ( ! 16 , z - x ) ; ( x + ! 8 - z , z + ! 16 + ! 8 - z ) ]
let r12 = of_eqs [ ( ! 16 , z - x ) ; ( x + ! 8 - z , z + ! 16 + ! 8 - z ) ]
let % expect_test _ =
let % expect_test _ =
pp r12 ;
pp r12 ;
[ % expect { | ( - 16 + 1 × ( % z_7 ) ) = % x_5 | } ]
[ % expect { | ( - 16 + % z_7 ) = % x_5 | } ]
let r13 =
let r13 =
of_eqs
of_eqs
@ -488,7 +486,7 @@ let%test_module _ =
[ - 1 ↦ ] ;
[ - 1 ↦ ] ;
[ 0 ↦ ] ] }
[ 0 ↦ ] ] }
% x_5 = % x_5 ^ ∧ ( - 1 + 1 × ( % y_6 ) ) = % y_6 ^ | } ]
% x_5 = % x_5 ^ ∧ ( - 1 + % y_6 ) = % y_6 ^ | } ]
let r19 = of_eqs [ ( x , y + z ) ; ( x , ! 0 ) ; ( y , ! 0 ) ]
let r19 = of_eqs [ ( x , y + z ) ; ( x , ! 0 ) ; ( y , ! 0 ) ]