@ -133,8 +133,12 @@ type fml =
| Ff
| Ff
| Eq of trm * trm
| Eq of trm * trm
| Dq of trm * trm
| Dq of trm * trm
| Lt of trm * trm
| Eq0 of trm (* * [Eq0 ( x ) ] iff x = 0 *)
| Le of trm * trm
| Dq0 of trm (* * [Dq0 ( x ) ] iff x ≠ 0 *)
| Gt0 of trm (* * [Gt0 ( x ) ] iff x > 0 *)
| Ge0 of trm (* * [Ge0 ( x ) ] iff x ≥ 0 *)
| Lt0 of trm (* * [Lt0 ( x ) ] iff x < 0 *)
| Le0 of trm (* * [Le0 ( x ) ] iff x ≤ 0 *)
| And of fml * fml
| And of fml * fml
| Or of fml * fml
| Or of fml * fml
| Iff of fml * fml
| Iff of fml * fml
@ -146,8 +150,12 @@ type fml =
let _ Eq x y = Eq ( x , y )
let _ Eq x y = Eq ( x , y )
let _ Dq x y = Dq ( x , y )
let _ Dq x y = Dq ( x , y )
let _ Lt x y = Lt ( x , y )
let _ Eq0 x = Eq0 x
let _ Le x y = Le ( x , y )
let _ Dq0 x = Dq0 x
let _ Gt0 x = Gt0 x
let _ Ge0 x = Ge0 x
let _ Lt0 x = Lt0 x
let _ Le0 x = Le0 x
let _ And p q = And ( p , q )
let _ And p q = And ( p , q )
let _ Or p q = Or ( p , q )
let _ Or p q = Or ( p , q )
let _ Iff p q = Iff ( p , q )
let _ Iff p q = Iff ( p , q )
@ -461,8 +469,12 @@ let ppx_f strength fs fml =
| Ff -> pf " ff "
| Ff -> pf " ff "
| Eq ( x , y ) -> pf " (%a@ = %a) " pp_t x pp_t y
| Eq ( x , y ) -> pf " (%a@ = %a) " pp_t x pp_t y
| Dq ( x , y ) -> pf " (%a@ @<2>≠ %a) " pp_t x pp_t y
| Dq ( x , y ) -> pf " (%a@ @<2>≠ %a) " pp_t x pp_t y
| Lt ( x , y ) -> pf " (%a@ < %a) " pp_t x pp_t y
| Eq0 x -> pf " (0 = %a) " pp_t x
| Le ( x , y ) -> pf " (%a@ @<2>≤ %a) " pp_t x pp_t y
| Dq0 x -> pf " (0 @<2>≠ %a) " pp_t x
| Gt0 x -> pf " (0 < %a) " pp_t x
| Ge0 x -> pf " (0 @<2>≤ %a) " pp_t x
| Lt0 x -> pf " (0 > %a) " pp_t x
| Le0 x -> pf " (0 @<2>≥ %a) " pp_t x
| And ( x , y ) -> pf " (%a@ @<2>∧ %a) " pp x pp y
| And ( x , y ) -> pf " (%a@ @<2>∧ %a) " pp x pp y
| Or ( x , y ) -> pf " (%a@ @<2>∨ %a) " pp x pp y
| Or ( x , y ) -> pf " (%a@ @<2>∨ %a) " pp x pp y
| Iff ( x , y ) -> pf " (%a@ <=> %a) " pp x pp y
| Iff ( x , y ) -> pf " (%a@ <=> %a) " pp x pp y
@ -518,8 +530,8 @@ let rec fold_vars_t e ~init ~f =
let rec fold_vars_f ~ init p ~ f =
let rec fold_vars_f ~ init p ~ f =
match ( p : fml ) with
match ( p : fml ) with
| Tt | Ff -> init
| Tt | Ff -> init
| Eq ( x , y ) | Dq ( x , y ) | Lt ( x , y ) | Le ( x , y ) ->
| Eq ( x , y ) | Dq ( x , y ) -> fold_vars_t ~ f x ~ init : ( fold_vars_t ~ f y ~ init )
fold_vars_t ~ f x ~ init : ( fold_vars_t ~ f y ~ init )
| Eq0 x | Dq0 x | Gt0 x | Ge0 x | Lt0 x | Le0 x -> fold_vars_t ~ f x ~ init
| And ( x , y ) | Or ( x , y ) | Iff ( x , y ) | Xor ( x , y ) ->
| And ( x , y ) | Or ( x , y ) | Iff ( x , y ) | Xor ( x , y ) ->
fold_vars_f ~ f x ~ init : ( fold_vars_f ~ f y ~ init )
fold_vars_f ~ f x ~ init : ( fold_vars_f ~ f y ~ init )
| Cond { cnd ; pos ; neg } ->
| Cond { cnd ; pos ; neg } ->
@ -582,8 +594,12 @@ let rec map_vars_f ~f e =
| Tt | Ff -> e
| Tt | Ff -> e
| Eq ( x , y ) -> map2 ( map_vars_t ~ f ) e _ Eq x y
| Eq ( x , y ) -> map2 ( map_vars_t ~ f ) e _ Eq x y
| Dq ( x , y ) -> map2 ( map_vars_t ~ f ) e _ Dq x y
| Dq ( x , y ) -> map2 ( map_vars_t ~ f ) e _ Dq x y
| Lt ( x , y ) -> map2 ( map_vars_t ~ f ) e _ Lt x y
| Eq0 x -> map1 ( map_vars_t ~ f ) e _ Eq0 x
| Le ( x , y ) -> map2 ( map_vars_t ~ f ) e _ Le x y
| Dq0 x -> map1 ( map_vars_t ~ f ) e _ Dq0 x
| Gt0 x -> map1 ( map_vars_t ~ f ) e _ Gt0 x
| Ge0 x -> map1 ( map_vars_t ~ f ) e _ Ge0 x
| Lt0 x -> map1 ( map_vars_t ~ f ) e _ Lt0 x
| Le0 x -> map1 ( map_vars_t ~ f ) e _ Le0 x
| And ( x , y ) -> map2 ( map_vars_f ~ f ) e _ And x y
| And ( x , y ) -> map2 ( map_vars_f ~ f ) e _ And x y
| Or ( x , y ) -> map2 ( map_vars_f ~ f ) e _ Or x y
| Or ( x , y ) -> map2 ( map_vars_f ~ f ) e _ Or x y
| Iff ( x , y ) -> map2 ( map_vars_f ~ f ) e _ Iff x y
| Iff ( x , y ) -> map2 ( map_vars_f ~ f ) e _ Iff x y
@ -699,6 +715,9 @@ let ap1 : (trm -> exp) -> exp -> exp =
let ap1t : ( trm -> trm ) -> exp -> exp = fun f -> ap1 ( fun x -> ` Trm ( f x ) )
let ap1t : ( trm -> trm ) -> exp -> exp = fun f -> ap1 ( fun x -> ` Trm ( f x ) )
let ap1f : ( trm -> fml ) -> exp -> fml =
fun f x -> map_cnd _ Cond f ( embed_into_cnd x )
(* * Map a binary function on terms over conditional terms. This yields a
(* * Map a binary function on terms over conditional terms. This yields a
conditional tree with the structure from the first argument where each
conditional tree with the structure from the first argument where each
leaf has been replaced by a conditional tree with the structure from the
leaf has been replaced by a conditional tree with the structure from the
@ -908,8 +927,25 @@ module Formula = struct
let eq = ap2f _ Eq
let eq = ap2f _ Eq
let dq = ap2f _ Dq
let dq = ap2f _ Dq
let lt = ap2f _ Lt
let eq0 = ap1f _ Eq0
let le = ap2f _ Le
let dq0 = ap1f _ Dq0
let gt0 = ap1f _ Gt0
let ge0 = ap1f _ Ge0
let lt0 = ap1f _ Lt0
let le0 = ap1f _ Le0
let gt a b =
if a = = Term . zero then lt0 b
else if b = = Term . zero then gt0 a
else gt0 ( Term . sub a b )
let ge a b =
if a = = Term . zero then le0 b
else if b = = Term . zero then ge0 a
else ge0 ( Term . sub a b )
let lt a b = gt b a
let le a b = ge b a
(* connectives *)
(* connectives *)
@ -926,8 +962,12 @@ module Formula = struct
| Ff -> Tt
| Ff -> Tt
| Eq ( x , y ) -> Dq ( x , y )
| Eq ( x , y ) -> Dq ( x , y )
| Dq ( x , y ) -> Eq ( x , y )
| Dq ( x , y ) -> Eq ( x , y )
| Lt ( x , y ) -> Le ( y , x )
| Eq0 x -> Dq0 x
| Le ( x , y ) -> Lt ( y , x )
| Dq0 x -> Eq0 x
| Gt0 x -> Le0 x
| Ge0 x -> Lt0 x
| Lt0 x -> Ge0 x
| Le0 x -> Gt0 x
| And ( x , y ) -> Or ( not_ x , not_ y )
| And ( x , y ) -> Or ( not_ x , not_ y )
| Or ( x , y ) -> And ( not_ x , not_ y )
| Or ( x , y ) -> And ( not_ x , not_ y )
| Iff ( x , y ) -> Xor ( x , y )
| Iff ( x , y ) -> Xor ( x , y )
@ -1043,8 +1083,12 @@ let rec f_to_ses : fml -> Ses.Term.t = function
| Ff -> Ses . Term . false_
| Ff -> Ses . Term . false_
| Eq ( x , y ) -> Ses . Term . eq ( t_to_ses x ) ( t_to_ses y )
| Eq ( x , y ) -> Ses . Term . eq ( t_to_ses x ) ( t_to_ses y )
| Dq ( x , y ) -> Ses . Term . dq ( t_to_ses x ) ( t_to_ses y )
| Dq ( x , y ) -> Ses . Term . dq ( t_to_ses x ) ( t_to_ses y )
| Lt ( x , y ) -> Ses . Term . lt ( t_to_ses x ) ( t_to_ses y )
| Eq0 x -> Ses . Term . eq Ses . Term . zero ( t_to_ses x )
| Le ( x , y ) -> Ses . Term . le ( t_to_ses x ) ( t_to_ses y )
| Dq0 x -> Ses . Term . dq Ses . Term . zero ( t_to_ses x )
| Gt0 x -> Ses . Term . lt Ses . Term . zero ( t_to_ses x )
| Ge0 x -> Ses . Term . le Ses . Term . zero ( t_to_ses x )
| Lt0 x -> Ses . Term . lt ( t_to_ses x ) Ses . Term . zero
| Le0 x -> Ses . Term . le ( t_to_ses x ) Ses . Term . zero
| And ( p , q ) -> Ses . Term . and_ ( f_to_ses p ) ( f_to_ses q )
| And ( p , q ) -> Ses . Term . and_ ( f_to_ses p ) ( f_to_ses q )
| Or ( p , q ) -> Ses . Term . or_ ( f_to_ses p ) ( f_to_ses q )
| Or ( p , q ) -> Ses . Term . or_ ( f_to_ses p ) ( f_to_ses q )
| Iff ( p , q ) -> Ses . Term . eq ( f_to_ses p ) ( f_to_ses q )
| Iff ( p , q ) -> Ses . Term . eq ( f_to_ses p ) ( f_to_ses q )
@ -1467,13 +1511,13 @@ module Term_of_Llair = struct
ap_fff ( fun p q -> or_ p ( not_ q ) ) p q
ap_fff ( fun p q -> or_ p ( not_ q ) ) p q
| Ap2 ( Eq , _ , d , e ) -> ap_ttf eq d e
| Ap2 ( Eq , _ , d , e ) -> ap_ttf eq d e
| Ap2 ( Dq , _ , d , e ) -> ap_ttf dq d e
| Ap2 ( Dq , _ , d , e ) -> ap_ttf dq d e
| Ap2 ( Gt , _ , d , e ) -> ap_ttf lt e d
| Ap2 ( Gt , _ , d , e ) -> ap_ttf gt d e
| Ap2 ( Lt , _ , d , e ) -> ap_ttf lt d e
| Ap2 ( Lt , _ , d , e ) -> ap_ttf lt d e
| Ap2 ( Ge , _ , d , e ) -> ap_ttf le e d
| Ap2 ( Ge , _ , d , e ) -> ap_ttf ge d e
| Ap2 ( Le , _ , d , e ) -> ap_ttf le d e
| Ap2 ( Le , _ , d , e ) -> ap_ttf le d e
| Ap2 ( Ugt , typ , d , e ) -> usap_ttf lt typ e d
| Ap2 ( Ugt , typ , d , e ) -> usap_ttf gt typ d e
| Ap2 ( Ult , typ , d , e ) -> usap_ttf lt typ d e
| Ap2 ( Ult , typ , d , e ) -> usap_ttf lt typ d e
| Ap2 ( Uge , typ , d , e ) -> usap_ttf le typ e d
| Ap2 ( Uge , typ , d , e ) -> usap_ttf ge typ d e
| Ap2 ( Ule , typ , d , e ) -> usap_ttf le typ d e
| Ap2 ( Ule , typ , d , e ) -> usap_ttf le typ d e
| Ap2 ( Ord , _ , d , e ) -> ap_ttf ( upos2 Ordered ) d e
| Ap2 ( Ord , _ , d , e ) -> ap_ttf ( upos2 Ordered ) d e
| Ap2 ( Uno , _ , d , e ) -> ap_ttf ( uneg2 Ordered ) d e
| Ap2 ( Uno , _ , d , e ) -> ap_ttf ( uneg2 Ordered ) d e