@ -106,6 +106,7 @@ and Trm : sig
val add : trm -> trm -> trm
val add : trm -> trm -> trm
val sub : trm -> trm -> trm
val sub : trm -> trm -> trm
val seq_size_exn : trm -> trm
val seq_size_exn : trm -> trm
val vars : trm -> Var . t iter
end = struct
end = struct
type var = Var . t
type var = Var . t
@ -366,6 +367,24 @@ end = struct
| Some c -> c
| Some c -> c
| None -> Apply ( f , es ) )
| None -> Apply ( f , es ) )
| > check invariant
| > check invariant
let rec iter_vars e ~ f =
match e with
| Var _ as v -> f ( Var . of_ v )
| Z _ | Q _ | Ancestor _ -> ()
| Splat x | Select { rcd = x } -> iter_vars ~ f x
| Sized { seq = x ; siz = y } | Update { rcd = x ; elt = y } ->
iter_vars ~ f x ;
iter_vars ~ f y
| Extract { seq = x ; off = y ; len = z } ->
iter_vars ~ f x ;
iter_vars ~ f y ;
iter_vars ~ f z
| Concat xs | Record xs | Apply ( _ , xs ) ->
Array . iter ~ f : ( iter_vars ~ f ) xs
| Arith a -> Iter . iter ~ f : ( iter_vars ~ f ) ( Arith . iter a )
let vars e = Iter . from_labelled_iter ( iter_vars e )
end
end
open Trm
open Trm
@ -448,6 +467,8 @@ module Fml = struct
| ( ( Sized _ | Extract _ | Concat _ ) as a ) , x ->
| ( ( Sized _ | Extract _ | Concat _ ) as a ) , x ->
_ Eq ( _ Sized x ( seq_size_exn a ) ) a
_ Eq ( _ Sized x ( seq_size_exn a ) ) a
| _ -> sort_eq x y
| _ -> sort_eq x y
let vars p = Iter . flat_map ~ f : Trm . vars ( trms p )
end
end
module Fmls = Prop . Fmls
module Fmls = Prop . Fmls
@ -531,49 +552,6 @@ let ppx strength fs = function
let pp = ppx ( fun _ -> None )
let pp = ppx ( fun _ -> None )
(* * fold_vars *)
let fold_pos_neg ~ pos ~ neg s ~ f =
let f_not p s = f ( _ Not p ) s in
Fmls . fold ~ f : f_not neg ( Fmls . fold ~ f pos s )
let rec fold_vars_t e s ~ f =
match e with
| Z _ | Q _ | Ancestor _ -> s
| Var _ as v -> f ( Var . of_ v ) s
| Splat x | Select { rcd = x } -> fold_vars_t ~ f x s
| Sized { seq = x ; siz = y } | Update { rcd = x ; elt = y } ->
fold_vars_t ~ f x ( fold_vars_t ~ f y s )
| Extract { seq = x ; off = y ; len = z } ->
fold_vars_t ~ f x ( fold_vars_t ~ f y ( fold_vars_t ~ f z s ) )
| Concat xs | Record xs | Apply ( _ , xs ) ->
Array . fold ~ f : ( fold_vars_t ~ f ) xs s
| Arith a -> Iter . fold ~ f : ( fold_vars_t ~ f ) ( Arith . iter a ) s
let rec fold_vars_f p s ~ f =
match ( p : fml ) with
| Tt -> s
| Eq ( x , y ) -> fold_vars_t ~ f x ( fold_vars_t ~ f y s )
| Eq0 x | Pos x -> fold_vars_t ~ f x s
| Not x -> fold_vars_f ~ f x s
| And { pos ; neg } | Or { pos ; neg } ->
fold_pos_neg ~ f : ( fold_vars_f ~ f ) ~ pos ~ neg s
| Iff ( x , y ) -> fold_vars_f ~ f x ( fold_vars_f ~ f y s )
| Cond { cnd ; pos ; neg } ->
fold_vars_f ~ f cnd ( fold_vars_f ~ f pos ( fold_vars_f ~ f neg s ) )
| Lit ( _ , xs ) -> Array . fold ~ f : ( fold_vars_t ~ f ) xs s
let rec fold_vars_c c s ~ f =
match c with
| ` Ite ( cnd , thn , els ) ->
fold_vars_f ~ f cnd ( fold_vars_c ~ f thn ( fold_vars_c ~ f els s ) )
| ` Trm t -> fold_vars_t ~ f t s
let fold_vars e s ~ f =
match e with
| ` Fml p -> fold_vars_f ~ f p s
| # cnd as c -> fold_vars_c ~ f c s
(* * map *)
(* * map *)
let map1 f e cons x =
let map1 f e cons x =
@ -876,7 +854,20 @@ module Term = struct
(* * Traverse *)
(* * Traverse *)
let fold_vars = fold_vars
let rec iter_vars_c c ~ f =
match c with
| ` Ite ( cnd , thn , els ) ->
Iter . iter ~ f ( Fml . vars cnd ) ;
iter_vars_c ~ f thn ;
iter_vars_c ~ f els
| ` Trm t -> Iter . iter ~ f ( Trm . vars t )
let iter_vars e ~ f =
match e with
| ` Fml p -> Iter . iter ~ f ( Fml . vars p )
| # cnd as c -> iter_vars_c ~ f c
let vars e = Iter . from_labelled_iter ( iter_vars e )
(* * Transform *)
(* * Transform *)
@ -896,7 +887,7 @@ module Term = struct
(* * Query *)
(* * Query *)
let fv e = fold_vars ~ f : Var . Set . add e Var . Set . empty
let fv e = Var . Set . of_iter ( vars e )
end
end
(*
(*
@ -949,13 +940,13 @@ module Formula = struct
let cond ~ cnd ~ pos ~ neg = _ Cond cnd pos neg
let cond ~ cnd ~ pos ~ neg = _ Cond cnd pos neg
let not_ = _ Not
let not_ = _ Not
(* * Query *)
(* * Traverse *)
let fv e = fold_vars_f ~ f : Var . Set . add e Var . Set . empty
let vars = Fml . vars
(* * Traverse *)
(* * Query *)
let f old_vars = fold_vars_f
let f v p = Var . Set . of_iter ( vars p )
(* * Transform *)
(* * Transform *)
@ -998,6 +989,10 @@ module Formula = struct
let rename s e = map_vars ~ f : ( Var . Subst . apply s ) e
let rename s e = map_vars ~ f : ( Var . Subst . apply s ) e
let fold_pos_neg ~ pos ~ neg s ~ f =
let f_not p s = f ( _ Not p ) s in
Fmls . fold ~ f : f_not neg ( Fmls . fold ~ f pos s )
let fold_dnf :
let fold_dnf :
meet1 : ( ' literal -> ' conjunction -> ' conjunction )
meet1 : ( ' literal -> ' conjunction -> ' conjunction )
-> join1 : ( ' conjunction -> ' disjunction -> ' disjunction )
-> join1 : ( ' conjunction -> ' disjunction -> ' disjunction )
@ -1087,11 +1082,11 @@ let rec f_to_ses : fml -> Ses.Term.t = function
| Pos x -> Ses . Term . lt Ses . Term . zero ( t_to_ses x )
| Pos x -> Ses . Term . lt Ses . Term . zero ( t_to_ses x )
| Not p -> Ses . Term . not_ ( f_to_ses p )
| Not p -> Ses . Term . not_ ( f_to_ses p )
| And { pos ; neg } ->
| And { pos ; neg } ->
fold_pos_neg
Formula . fold_pos_neg
~ f : ( fun f p -> Ses . Term . and_ p ( f_to_ses f ) )
~ f : ( fun f p -> Ses . Term . and_ p ( f_to_ses f ) )
~ pos ~ neg Ses . Term . true_
~ pos ~ neg Ses . Term . true_
| Or { pos ; neg } ->
| Or { pos ; neg } ->
fold_pos_neg
Formula . fold_pos_neg
~ f : ( fun f p -> Ses . Term . or_ p ( f_to_ses f ) )
~ f : ( fun f p -> Ses . Term . or_ p ( f_to_ses f ) )
~ pos ~ neg Ses . Term . false_
~ pos ~ neg Ses . Term . false_
| Iff ( p , q ) -> Ses . Term . eq ( f_to_ses p ) ( f_to_ses q )
| Iff ( p , q ) -> Ses . Term . eq ( f_to_ses p ) ( f_to_ses q )
@ -1246,10 +1241,11 @@ module Context = struct
(* Query *)
(* Query *)
let fold_vars x s ~ f =
let vars x =
Ses . Equality . fold_vars ~ f : ( fun v -> f ( v_of_ses v ) ) x s
Iter . from_iter ( fun f ->
Ses . Equality . fold_vars ~ f : ( fun v () -> f ( v_of_ses v ) ) x () )
let fv e = fold_vars ~ f : Var . Set . add e Var . Set . empty
let fv x = Var . Set . of_iter ( vars x )
let is_empty x = Ses . Equality . is_true x
let is_empty x = Ses . Equality . is_true x
let is_unsat x = Ses . Equality . is_false x
let is_unsat x = Ses . Equality . is_false x
let implies x b = Ses . Equality . implies x ( f_to_ses b )
let implies x b = Ses . Equality . implies x ( f_to_ses b )