[sledge] Refactor the theory cases of the equality solver for clarity

Summary:
Rearrange and better document the equality solver cases for better
understandability.

Reviewed By: jvillard

Differential Revision: D24920759

fbshipit-source-id: 6386d33b3
master
Josh Berdine 4 years ago committed by Facebook GitHub Bot
parent 23b5571029
commit 5138c0eb15

@ -295,35 +295,20 @@ and solve_ ?f d e s =
| None -> Some s
(* i = j ==> false when i ≠ j *)
| Some (Z _, Z _) | Some (Q _, Q _) -> None
(*
* Concat
*)
(* ⟨0,a⟩ = β ==> a = β = ⟨⟩ *)
| Some (Sized {siz= n; seq= a}, b) when Trm.equal n Trm.zero ->
| Some (Sized {siz= n; seq= a}, b) when n == Trm.zero ->
s |> solve_ ?f a (Trm.concat [||]) >>= solve_ ?f b (Trm.concat [||])
| Some (b, Sized {siz= n; seq= a}) when Trm.equal n Trm.zero ->
| Some (b, Sized {siz= n; seq= a}) when n == Trm.zero ->
s |> solve_ ?f a (Trm.concat [||]) >>= solve_ ?f b (Trm.concat [||])
(* v = ⟨n,a⟩ ==> v = a *)
| Some ((Var _ as v), Sized {seq= a}) -> s |> solve_ ?f v a
(* ⟨n,a⟩ = ⟨m,b⟩ ==> n = m ∧ a = β *)
| Some (Sized {siz= n; seq= a}, Sized {siz= m; seq= b}) ->
s |> solve_ ?f n m >>= solve_ ?f a b
(* ⟨n,0⟩ = α₀^…^αᵥ ==> *)
(* ⟨n,0⟩ = α₀^…^αᵥ ==> … ∧ αⱼ = ⟨n,0⟩[n₀+…+nᵢ,nⱼ) ∧ … *)
| Some ((Sized {siz= n; seq} as b), Concat a0V) when seq == Trm.zero ->
solve_concat ?f a0V b n s
(* ⟨n,e^⟩ = α₀^…^αᵥ ==> *)
(* ⟨n,e^⟩ = α₀^…^αᵥ ==> … ∧ αⱼ = ⟨n,e^⟩[n₀+…+nᵢ,nⱼ) ∧ … *)
| Some ((Sized {siz= n; seq= Splat _} as b), Concat a0V) ->
solve_concat ?f a0V b n s
(* ⟨n,a⟩ = β ==> n = |β| ∧ a = β *)
| Some (Sized {siz= n; seq= a}, b) ->
( match Trm.seq_size b with
| None -> Some s
| Some m -> solve_ ?f n m s )
>>= solve_ ?f a b
| Some ((Var _ as v), (Extract {len= l} as e)) ->
if not (Var.Set.mem (Var.of_ v) (Trm.fv e)) then
(* v = α[o,l) ==> v ↦ α[o,l) when v ∉ fv(α[o,l)) *)
compose1 ?f ~var:v ~rep:e s
else
(* v = α[o,l) ==> α[o,l) ↦ ⟨l,v⟩ when v ∈ fv(α[o,l)) *)
compose1 ?f ~var:e ~rep:(Trm.sized ~siz:l ~seq:v) s
| Some ((Var _ as v), (Concat a0V as c)) ->
if not (Var.Set.mem (Var.of_ v) (Trm.fv c)) then
(* v = α₀^…^αᵥ ==> v ↦ α₀^…^αᵥ when v ∉ fv(α₀^…^αᵥ) *)
@ -332,14 +317,48 @@ and solve_ ?f d e s =
(* v = α₀^…^αᵥ ==> ⟨|α₀^…^αᵥ|,v⟩ = α₀^…^αᵥ when v ∈ fv(α₀^…^αᵥ) *)
let m = Trm.seq_size_exn c in
solve_concat ?f a0V (Trm.sized ~siz:m ~seq:v) m s
| Some ((Extract {len= l} as e), Concat a0V) -> solve_concat ?f a0V e l s
(* α₀^…^αᵥ = β₀^…^βᵤ ==> … ∧ αⱼ = (β₀^…^βᵤ)[n₀+…+nᵢ,nⱼ) ∧ … *)
| Some (Concat a0V, (Concat _ as c)) ->
solve_concat ?f a0V c (Trm.seq_size_exn c) s
(* α[o,l) = α₀^…^αᵥ ==> … ∧ αⱼ = α[o,l)[n₀+…+nᵢ,nⱼ) ∧ … *)
| Some ((Extract {len= l} as e), Concat a0V) -> solve_concat ?f a0V e l s
(*
* Extract
*)
| Some ((Var _ as v), (Extract {len= l} as e)) ->
if not (Var.Set.mem (Var.of_ v) (Trm.fv e)) then
(* v = α[o,l) ==> v ↦ α[o,l) when v ∉ fv(α[o,l)) *)
compose1 ?f ~var:v ~rep:e s
else
(* v = α[o,l) ==> α[o,l) ↦ ⟨l,v⟩ when v ∈ fv(α[o,l)) *)
compose1 ?f ~var:e ~rep:(Trm.sized ~siz:l ~seq:v) s
(* α[o,l) = β ==> … ∧ α = _^β^_ *)
| Some (Extract {seq= a; off= o; len= l}, e) -> solve_extract ?f a o l e s
(*
* Sized
*)
(* v = ⟨n,a⟩ ==> v = a *)
| Some ((Var _ as v), Sized {seq= a}) -> s |> solve_ ?f v a
(* ⟨n,a⟩ = ⟨m,b⟩ ==> n = m ∧ a = β *)
| Some (Sized {siz= n; seq= a}, Sized {siz= m; seq= b}) ->
s |> solve_ ?f n m >>= solve_ ?f a b
(* ⟨n,a⟩ = β ==> n = |β| ∧ a = β *)
| Some (Sized {siz= n; seq= a}, b) ->
( match Trm.seq_size b with
| None -> Some s
| Some m -> solve_ ?f n m s )
>>= solve_ ?f a b
(*
* Arithmetic
*)
(* p = q ==> p-q = 0 *)
| Some (((Arith _ | Z _ | Q _) as p), q | q, ((Arith _ | Z _ | Q _) as p))
->
solve_poly ?f p q s
(*
* Uninterpreted
*)
(* r = v ==> v ↦ r *)
| Some (rep, var) ->
assert (non_interpreted var) ;
assert (non_interpreted rep) ;

Loading…
Cancel
Save