[sledge sem] Make proof progress on phi instructions

Summary:
The old syntactic invariant in prog_ok was in the wrong direction,
saying that all labels in a phi instruction have to exist, rather than
saying that when we jump to a new block, the label of the block we came
from must be in all of the phi instructions.

Reviewed By: jberdine

Differential Revision: D18058832

fbshipit-source-id: d2ad33b04
master
Scott Owens 5 years ago committed by Facebook Github Bot
parent 0a35b1da35
commit 573f0d8aed

@ -752,21 +752,25 @@ Definition instr_to_labs_def:
(instr_to_labs _ = [])
End
Definition phi_contains_label_def:
phi_contains_label l (Phi _ _ ls) alookup ls l None
End
Definition prog_ok_def:
prog_ok p
((* All blocks end with terminators and terminators only appear at the end.
* All labels mentioned in branches actually exist, and target non-entry
* blocks *)
* blocks, whose phi nodes have entries for the label of the block that the
* branch is from. *)
∀fname dec bname block.
alookup p fname = Some dec
alookup dec.blocks bname = Some block
block.body [] terminator (last block.body)
every (λi. ¬terminator i) (front block.body)
every (λlab. ∃b. alookup dec.blocks (Some lab) = Some b b.h Entry)
(instr_to_labs (last block.body))
(∀phis lands. block.h = Head phis lands
every (λx. case x of Phi _ _ l => every (λ(lab, _). alookup dec.blocks lab None) l) phis))
every (λlab. ∃b phis land. alookup dec.blocks (Some lab) = Some b
b.h = Head phis land every (phi_contains_label bname) phis)
(instr_to_labs (last block.body)))
((* All functions have an entry block *)
∀fname dec.
alookup p fname = Some dec

@ -71,6 +71,10 @@ Inductive pc_rel:
* should point to a block generated from them *)
(∀prog emap ip bp b from_l phis.
get_instr prog ip (Inr (from_l, phis))
(* We should have just jumped here from block from_l *)
(∃d b. alookup prog ip.f = Some d
alookup d.blocks from_l = Some b
ip.b set (map Some (instr_to_labs (last b.body))))
(* TODO: constrain b to be generated from the phis *)
get_block (translate_prog prog) bp b
@ -1038,14 +1042,19 @@ Proof
>- (Cases_on `lab1` >> rw [Abbr `target'`, translate_label_def, dest_label_def])
>- (
fs [get_instr_cases] >>
`every (λlab. ∃b. alookup d.blocks (Some lab) = Some b b.h Entry)
`every (λlab. ∃b phis landing. alookup d.blocks (Some lab) = Some b b.h = Head phis landing)
(instr_to_labs (last b.body))`
by metis_tac [prog_ok_def] >>
by (fs [prog_ok_def, EVERY_MEM] >> metis_tac []) >>
rfs [instr_to_labs_def] >>
rw [pc_rel_cases, get_instr_cases, get_block_cases, GSYM PULL_EXISTS]
>- metis_tac [blockHeader_nchotomy] >>
rw [pc_rel_cases, get_instr_cases, get_block_cases, PULL_EXISTS] >>
fs [GSYM PULL_EXISTS, Abbr `target`] >>
rw [MEM_MAP, instr_to_labs_def] >>
fs [translate_prog_def] >>
(* Unfinished *)
`∀y z. dest_fn y = dest_fn z y = z`
by (Cases_on `y` >> Cases_on `z` >> rw [dest_fn_def]) >>
rw [alookup_map_key] >>
(* Unfinished, will get more proof obligations once pc_rel is fleshed
* out for Inr case *)
cheat)
>- (
fs [mem_state_rel_def] >> rw []
@ -1160,13 +1169,39 @@ Proof
reverse (fs [Once multi_step_cases])
>- metis_tac [get_instr_func, sumTheory.sum_distinct] >>
qpat_x_assum `last_step _ _ _ _` mp_tac >>
(*
simp [last_step_def] >> simp [Once llvmTheory.step_cases] >>
rw [] >> imp_res_tac get_instr_func >> fs [] >> rw [] >>
fs [translate_trace_def] >>
*)
(* TODO: unfinished *)
cheat
simp [last_step_cases] >> strip_tac
>- (
fs [llvmTheory.step_cases]
>- metis_tac [get_instr_func, sumTheory.sum_distinct] >>
fs [translate_trace_def] >> rw [] >>
(* Needs the completed pc_rel for the Inr case *)
cheat)
>- metis_tac [get_instr_func, sumTheory.sum_distinct]
>- metis_tac [get_instr_func, sumTheory.sum_distinct]
>- (
fs [llvmTheory.step_cases] >> rw [translate_trace_def] >>
`!i. ¬get_instr prog s1.ip (Inl i)`
by metis_tac [get_instr_func, sumTheory.sum_distinct] >>
fs [METIS_PROVE [] ``~x y (x y)``] >>
first_x_assum drule >> rw [] >>
`~every IS_SOME (map (do_phi from_l s1) phis)` by metis_tac [map_is_some] >>
fs [get_instr_cases] >>
rename [`alookup _ s1.ip.b = Some b_targ`, `alookup _ from_l = Some b_src`] >>
`every (phi_contains_label from_l) phis`
by (
fs [prog_ok_def, get_instr_cases] >>
first_x_assum (qspecl_then [`s1.ip.f`, `d`, `from_l`] mp_tac) >> rw [] >>
fs [EVERY_MEM, MEM_MAP] >>
rfs [] >> rw [] >> first_x_assum drule >> rw [] >>
first_x_assum irule >> fs [] >> rfs [] >> fs []) >>
fs [EVERY_MEM, EXISTS_MEM, MEM_MAP] >>
first_x_assum drule >> rw [] >>
rename1 `phi_contains_label _ phi` >> Cases_on `phi` >>
fs [do_phi_def, phi_contains_label_def] >>
rename1 `alookup entries from_l None` >>
Cases_on `alookup entries from_l` >> fs [] >>
(* TODO: LLVM "eval" gets stuck *)
cheat)
QED
Theorem step_block_to_multi_step:
@ -1179,6 +1214,7 @@ Theorem step_block_to_multi_step:
multi_step prog s1 (map untranslate_trace tr) s2
state_rel prog gmap emap s2 s2'
Proof
(* TODO, LLVM can simulate llair direction *)
cheat
QED
@ -1264,6 +1300,7 @@ Theorem translate_global_var_11:
t1 = t2
Proof
(* TODO, LLVM can simulate llair direction *)
cheat
QED

@ -200,6 +200,25 @@ Proof
Induct >> rw [] >> Cases_on `l2` >> fs []
QED
Theorem alookup_map_key:
∀al x f g.
(∀y z. f y = f z y = z)
alookup (map (\(k, v). (f k, g k v)) al) (f x) =
option_map (g x) (alookup al x)
Proof
Induct >> rw [] >> pairarg_tac >> rw [] >> metis_tac []
QED
Theorem map_is_some:
∀f l1. (∃l2. map f l1 = map Some l2) every IS_SOME (map f l1)
Proof
Induct_on `l1` >> rw [] >> eq_tac >> rw []
>- (Cases_on `l2` >> fs [])
>- (Cases_on `l2` >> fs [EVERY_MAP] >> metis_tac [])
>- (fs [optionTheory.IS_SOME_EXISTS] >> metis_tac [MAP])
QED
(* ----- Theorems about log ----- *)
Theorem mul_div_bound:

Loading…
Cancel
Save