[sledge] Remove non-zero formula

Summary: It is redundant with `Not Eq0`

Reviewed By: ngorogiannis

Differential Revision: D24306058

fbshipit-source-id: 75ca55016
master
Josh Berdine 4 years ago committed by Facebook GitHub Bot
parent 5acd64c22e
commit 5ea779671a

@ -261,7 +261,6 @@ module Fml : sig
| Eq of trm * trm | Eq of trm * trm
(* arithmetic *) (* arithmetic *)
| Eq0 of trm (** [Eq0(x)] iff x = 0 *) | Eq0 of trm (** [Eq0(x)] iff x = 0 *)
| Dq0 of trm (** [Dq0(x)] iff x ≠ 0 *)
| Gt0 of trm (** [Gt0(x)] iff x > 0 *) | Gt0 of trm (** [Gt0(x)] iff x > 0 *)
| Le0 of trm (** [Le0(x)] iff x ≤ 0 *) | Le0 of trm (** [Le0(x)] iff x ≤ 0 *)
(* propositional connectives *) (* propositional connectives *)
@ -279,7 +278,6 @@ module Fml : sig
val _Tt : fml val _Tt : fml
val _Eq : trm -> trm -> fml val _Eq : trm -> trm -> fml
val _Eq0 : trm -> fml val _Eq0 : trm -> fml
val _Dq0 : trm -> fml
val _Gt0 : trm -> fml val _Gt0 : trm -> fml
val _Le0 : trm -> fml val _Le0 : trm -> fml
val _Not : fml -> fml val _Not : fml -> fml
@ -295,7 +293,6 @@ end = struct
| Tt | Tt
| Eq of trm * trm | Eq of trm * trm
| Eq0 of trm | Eq0 of trm
| Dq0 of trm
| Gt0 of trm | Gt0 of trm
| Le0 of trm | Le0 of trm
| Not of fml | Not of fml
@ -340,14 +337,6 @@ end = struct
| SemDq -> _Ff | SemDq -> _Ff
| SynLt | SynGt -> Eq0 x | SynLt | SynGt -> Eq0 x
let _Dq0 x =
match compare_semantic_syntactic zero x with
(* 0 ≠ 0 ==> ff *)
| SemEq -> _Ff
(* 0 ≠ N ==> tt for N ≢ 0 *)
| SemDq -> Tt
| SynLt | SynGt -> Dq0 x
let _Eq x y = let _Eq x y =
if x == zero then _Eq0 y if x == zero then _Eq0 y
else if y == zero then _Eq0 x else if y == zero then _Eq0 x
@ -372,7 +361,7 @@ end = struct
let _UNegLit p xs = UNegLit (p, xs) let _UNegLit p xs = UNegLit (p, xs)
let rec is_negative = function let rec is_negative = function
| Not (Tt | Eq _) | Dq0 _ | Le0 _ | Or _ | Xor _ | UNegLit _ -> true | Not (Tt | Eq _ | Eq0 _) | Le0 _ | Or _ | Xor _ | UNegLit _ -> true
| Tt | Eq _ | Eq0 _ | Gt0 _ | And _ | Iff _ | UPosLit _ | Cond _ -> | Tt | Eq _ | Eq0 _ | Gt0 _ | And _ | Iff _ | UPosLit _ | Cond _ ->
false false
| Not p -> not (is_negative p) | Not p -> not (is_negative p)
@ -382,7 +371,7 @@ end = struct
let rec equal_or_opposite p q = let rec equal_or_opposite p q =
match (p, q) with match (p, q) with
| p, Not p' | Not p', p -> if equal_fml p p' then Opposite else Unknown | p, Not p' | Not p', p -> if equal_fml p p' then Opposite else Unknown
| Eq0 a, Dq0 a' | Dq0 a, Eq0 a' | Gt0 a, Le0 a' | Le0 a, Gt0 a' -> | Gt0 a, Le0 a' | Le0 a, Gt0 a' ->
if equal_trm a a' then Opposite else Unknown if equal_trm a a' then Opposite else Unknown
| And (a, b), Or (a', b') | Or (a', b'), And (a, b) -> ( | And (a, b), Or (a', b') | Or (a', b'), And (a, b) -> (
match equal_or_opposite a a' with match equal_or_opposite a a' with
@ -458,8 +447,6 @@ end = struct
Xor (p, q) ) Xor (p, q) )
and _Not = function and _Not = function
| Eq0 x -> _Dq0 x
| Dq0 x -> _Eq0 x
| Gt0 x -> _Le0 x | Gt0 x -> _Le0 x
| Le0 x -> _Gt0 x | Le0 x -> _Gt0 x
| Not x -> x | Not x -> x
@ -470,7 +457,7 @@ end = struct
| Cond {cnd; pos; neg} -> _Cond cnd (_Not pos) (_Not neg) | Cond {cnd; pos; neg} -> _Cond cnd (_Not pos) (_Not neg)
| UPosLit (p, xs) -> _UNegLit p xs | UPosLit (p, xs) -> _UNegLit p xs
| UNegLit (p, xs) -> _UPosLit p xs | UNegLit (p, xs) -> _UPosLit p xs
| (Tt | Eq _) as x -> Not x | (Tt | Eq _ | Eq0 _) as x -> Not x
and _Cond cnd pos neg = and _Cond cnd pos neg =
match (cnd, pos, neg) with match (cnd, pos, neg) with
@ -539,7 +526,7 @@ let ppx_f strength fs fml =
| Eq (x, y) -> pf "(%a@ = %a)" pp_t x pp_t y | Eq (x, y) -> pf "(%a@ = %a)" pp_t x pp_t y
| Not (Eq (x, y)) -> pf "(%a@ @<2>≠ %a)" pp_t x pp_t y | Not (Eq (x, y)) -> pf "(%a@ @<2>≠ %a)" pp_t x pp_t y
| Eq0 x -> pf "(0 = %a)" pp_t x | Eq0 x -> pf "(0 = %a)" pp_t x
| Dq0 x -> pf "(0 @<2>≠ %a)" pp_t x | Not (Eq0 x) -> pf "(0 @<2>≠ %a)" pp_t x
| Gt0 x -> pf "(0 < %a)" pp_t x | Gt0 x -> pf "(0 < %a)" pp_t x
| Le0 x -> pf "(0 @<2>≥ %a)" pp_t x | Le0 x -> pf "(0 @<2>≥ %a)" pp_t x
| Not x -> pf "@<1>¬%a" pp x | Not x -> pf "@<1>¬%a" pp x
@ -597,7 +584,7 @@ let rec fold_vars_f ~init p ~f =
match (p : fml) with match (p : fml) with
| Tt -> init | Tt -> init
| Eq (x, y) -> fold_vars_t ~f x ~init:(fold_vars_t ~f y ~init) | Eq (x, y) -> fold_vars_t ~f x ~init:(fold_vars_t ~f y ~init)
| Eq0 x | Dq0 x | Gt0 x | Le0 x -> fold_vars_t ~f x ~init | Eq0 x | Gt0 x | Le0 x -> fold_vars_t ~f x ~init
| Not x -> fold_vars_f ~f x ~init | Not x -> fold_vars_f ~f x ~init
| And (x, y) | Or (x, y) | Iff (x, y) | Xor (x, y) -> | And (x, y) | Or (x, y) | Iff (x, y) | Xor (x, y) ->
fold_vars_f ~f x ~init:(fold_vars_f ~f y ~init) fold_vars_f ~f x ~init:(fold_vars_f ~f y ~init)
@ -646,7 +633,6 @@ let rec map_trms_f ~f b =
| Tt -> b | Tt -> b
| Eq (x, y) -> map2 f b _Eq x y | Eq (x, y) -> map2 f b _Eq x y
| Eq0 x -> map1 f b _Eq0 x | Eq0 x -> map1 f b _Eq0 x
| Dq0 x -> map1 f b _Dq0 x
| Gt0 x -> map1 f b _Gt0 x | Gt0 x -> map1 f b _Gt0 x
| Le0 x -> map1 f b _Le0 x | Le0 x -> map1 f b _Le0 x
| Not x -> map1 (map_trms_f ~f) b _Not x | Not x -> map1 (map_trms_f ~f) b _Not x
@ -747,7 +733,7 @@ let project_out_fml : cnd -> fml option = function
[0 x] holds. *) [0 x] holds. *)
let embed_into_fml : exp -> fml = function let embed_into_fml : exp -> fml = function
| `Fml fml -> fml | `Fml fml -> fml
| #cnd as c -> map_cnd _Cond _Dq0 c | #cnd as c -> map_cnd _Cond (fun e -> _Not (_Eq0 e)) c
(** Construct a conditional term, or formula if possible precisely. *) (** Construct a conditional term, or formula if possible precisely. *)
let ite : fml -> exp -> exp -> exp = let ite : fml -> exp -> exp -> exp =
@ -956,7 +942,7 @@ module Formula = struct
let eq = ap2f _Eq let eq = ap2f _Eq
let dq a b = _Not (eq a b) let dq a b = _Not (eq a b)
let eq0 = ap1f _Eq0 let eq0 = ap1f _Eq0
let dq0 = ap1f _Dq0 let dq0 a = _Not (eq0 a)
let gt0 = ap1f _Gt0 let gt0 = ap1f _Gt0
let le0 = ap1f _Le0 let le0 = ap1f _Le0
let ge0 a = le0 (Term.neg a) let ge0 a = le0 (Term.neg a)
@ -1020,7 +1006,6 @@ module Formula = struct
| Tt -> b | Tt -> b
| Eq (x, y) -> lift_map2 f b _Eq x y | Eq (x, y) -> lift_map2 f b _Eq x y
| Eq0 x -> lift_map1 f b _Eq0 x | Eq0 x -> lift_map1 f b _Eq0 x
| Dq0 x -> lift_map1 f b _Dq0 x
| Gt0 x -> lift_map1 f b _Gt0 x | Gt0 x -> lift_map1 f b _Gt0 x
| Le0 x -> lift_map1 f b _Le0 x | Le0 x -> lift_map1 f b _Le0 x
| Not x -> map1 (map_terms ~f) b _Not x | Not x -> map1 (map_terms ~f) b _Not x
@ -1054,8 +1039,8 @@ module Formula = struct
fun ~meet1 ~join1 ~top ~bot fml -> fun ~meet1 ~join1 ~top ~bot fml ->
let rec add_conjunct (cjn, splits) fml = let rec add_conjunct (cjn, splits) fml =
match fml with match fml with
| Tt | Eq _ | Eq0 _ | Dq0 _ | Gt0 _ | Le0 _ | Iff _ | Xor _ | Tt | Eq _ | Eq0 _ | Gt0 _ | Le0 _ | Iff _ | Xor _ | UPosLit _
|UPosLit _ | UNegLit _ | Not _ -> |UNegLit _ | Not _ ->
(meet1 fml cjn, splits) (meet1 fml cjn, splits)
| And (p, q) -> add_conjunct (add_conjunct (cjn, splits) p) q | And (p, q) -> add_conjunct (add_conjunct (cjn, splits) p) q
| Or (p, q) -> (cjn, [p; q] :: splits) | Or (p, q) -> (cjn, [p; q] :: splits)
@ -1130,7 +1115,6 @@ let rec f_to_ses : fml -> Ses.Term.t = function
| Not Tt -> Ses.Term.false_ | Not Tt -> Ses.Term.false_
| Eq (x, y) -> Ses.Term.eq (t_to_ses x) (t_to_ses y) | Eq (x, y) -> Ses.Term.eq (t_to_ses x) (t_to_ses y)
| Eq0 x -> Ses.Term.eq Ses.Term.zero (t_to_ses x) | Eq0 x -> Ses.Term.eq Ses.Term.zero (t_to_ses x)
| Dq0 x -> Ses.Term.dq Ses.Term.zero (t_to_ses x)
| Gt0 x -> Ses.Term.lt Ses.Term.zero (t_to_ses x) | Gt0 x -> Ses.Term.lt Ses.Term.zero (t_to_ses x)
| Le0 x -> Ses.Term.le (t_to_ses x) Ses.Term.zero | Le0 x -> Ses.Term.le (t_to_ses x) Ses.Term.zero
| Not p -> Ses.Term.not_ (f_to_ses p) | Not p -> Ses.Term.not_ (f_to_ses p)

Loading…
Cancel
Save