[sledge] Use unsat context and ff pure constraints in unsat symbolic heaps

Summary:
Sh operations usually detect inconsistency where needed. But some
operations such as Context.inter must treat the unsat case
specially. This diff increases robustness by not relying on Sh to
detect inconsistency in order to get the correct context or pure
constraints, or to use the fast-paths through Context or Formula
operations.

Reviewed By: jvillard

Differential Revision: D25756550

fbshipit-source-id: 091439ff6
master
Josh Berdine 4 years ago committed by Facebook GitHub Bot
parent c065e6f384
commit 69a979612b

@ -27,6 +27,9 @@ include Invariant.S with type t := t
val empty : t
(** The empty context of assumptions. *)
val unsat : t
(** An unsatisfiable context of assumptions. *)
val add : Var.Set.t -> Formula.t -> t -> Var.Set.t * t
(** Add (that is, conjoin) an assumption to a context. *)

@ -37,7 +37,8 @@ let emp =
; heap= []
; djns= [] }
let false_ us = {emp with us; djns= [[]]}
let false_ us =
{emp with us; ctx= Context.unsat; pure= Formula.ff; djns= [[]]}
(** Traversals *)
@ -186,6 +187,9 @@ let rec pp_ ?var_strength ?vs ancestor_xs parent_ctx fs
Format.pp_open_hvbox fs 0 ;
let x v = Option.bind ~f:(fun (_, m) -> Var.Map.find v m) var_strength in
pp_us ~pre:"@<2>∀ " ?vs () fs us ;
( match djns with
| [[]] when Option.is_some var_strength -> Format.fprintf fs "false"
| _ ->
let vs = Option.value vs ~default:Var.Set.empty in
let xs_d_vs, xs_i_vs =
Var.Set.diff_inter
@ -222,7 +226,7 @@ let rec pp_ ?var_strength ?vs ancestor_xs parent_ctx fs
(Var.Set.union vs (Var.Set.union us xs))
(Var.Set.union ancestor_xs xs)
ctx)
fs djns ;
fs djns ) ;
Format.pp_close_box fs ()
and pp_djn ?var_strength vs xs ctx fs = function
@ -260,9 +264,6 @@ let fv ?ignore_ctx ?ignore_pure q =
in
fv_union q Var.Set.empty
let invariant_pure p = assert (not Formula.(equal ff p))
let invariant_seg _ = ()
let rec invariant q =
let@ () = Invariant.invariant [%here] q [%sexp_of: t] in
let {us; xs; ctx; pure; heap; djns} = q in
@ -278,12 +279,13 @@ let rec invariant q =
Context.invariant ctx ;
( match djns with
| [[]] ->
assert (Context.is_empty ctx) ;
assert (Formula.(equal tt pure)) ;
assert (Context.is_unsat ctx) ;
assert (Formula.equal Formula.ff pure) ;
assert (List.is_empty heap)
| _ -> assert (not (Context.is_unsat ctx)) ) ;
invariant_pure pure ;
List.iter heap ~f:invariant_seg ;
| _ ->
assert (not (Context.is_unsat ctx)) ;
assert (not (Formula.equal Formula.ff pure)) ;
assert (not (List.exists djns ~f:List.is_empty)) ) ;
List.iter djns ~f:(fun djn ->
List.iter djn ~f:(fun sjn ->
assert (Var.Set.subset sjn.us ~of_:(Var.Set.union us xs)) ;
@ -293,6 +295,41 @@ let rec invariant q =
[%Trace.info "%a" pp_raw q] ;
Printexc.raise_with_backtrace exc bt
(** Query *)
(** syntactically empty: empty heap and no pure constraints *)
let is_emp q =
Context.is_empty q.ctx
&& Formula.equal Formula.tt q.pure
&& List.is_empty q.heap
&& List.is_empty q.djns
(** (incomplete syntactic) test that all satisfying heaps are empty *)
let rec is_empty q =
List.is_empty q.heap && List.for_all ~f:(List.for_all ~f:is_empty) q.djns
(** syntactically inconsistent *)
let is_false q = match q.djns with [[]] -> true | _ -> false
(** first-order approximation of heap constraints *)
let rec pure_approx q =
Formula.andN
( [q.pure]
|> List.fold q.heap ~f:(fun seg p -> Formula.dq0 seg.loc :: p)
|> List.fold q.djns ~f:(fun djn p ->
Formula.orN (List.map djn ~f:pure_approx) :: p ) )
let pure_approx q =
[%Trace.call fun {pf} -> pf "%a" pp q]
;
pure_approx q
|>
[%Trace.retn fun {pf} -> pf "%a" Formula.pp]
(** test if pure constraints are inconsistent with first-order consequences
of spatial constraints *)
let is_unsat q = Context.refutes q.ctx (pure_approx q)
(** Quantification and Vocabulary *)
let exists_fresh xs q =
@ -330,11 +367,15 @@ let elim_exists xs q =
let map ~f_sjn ~f_ctx ~f_trm ~f_fml ({us; xs= _; ctx; pure; heap; djns} as q)
=
let pure = f_fml pure in
if Formula.(equal ff pure) then false_ us
if Formula.equal Formula.ff pure then false_ us
else
let xs, ctx = f_ctx ctx in
let heap = List.map_endo heap ~f:(map_seg ~f:f_trm) in
if Context.is_unsat ctx then false_ us
else
let djns = List.map_endo djns ~f:(List.map_endo ~f:f_sjn) in
if List.exists ~f:List.is_empty djns then false_ us
else
let heap = List.map_endo heap ~f:(map_seg ~f:f_trm) in
if
ctx == q.ctx
&& pure == q.pure
@ -437,9 +478,7 @@ let and_ctx_ ctx q =
let and_ctx ctx q =
[%Trace.call fun {pf} -> pf "%a@ %a" Context.pp ctx pp q]
;
( match q.djns with
| [[]] -> q
| _ -> and_ctx_ ctx (extend_us (Context.fv ctx) q) )
(if is_false q then q else and_ctx_ ctx (extend_us (Context.fv ctx) q))
|>
[%Trace.retn fun {pf} q ->
pf "%a" pp q ;
@ -453,18 +492,10 @@ let star q1 q2 =
invariant q ;
assert (Var.Set.equal q.us (Var.Set.union q1.us q2.us)) )
@@ fun () ->
match (q1, q2) with
| {djns= [[]]; _}, _ | _, {djns= [[]]; _} ->
false_ (Var.Set.union q1.us q2.us)
| {us= _; xs= _; ctx; pure; heap= []; djns= []}, _
when Context.is_empty ctx && Formula.(equal tt pure) ->
let us = Var.Set.union q1.us q2.us in
if us == q2.us then q2 else {q2 with us}
| _, {us= _; xs= _; ctx; pure; heap= []; djns= []}
when Context.is_empty ctx && Formula.(equal tt pure) ->
let us = Var.Set.union q1.us q2.us in
if us == q1.us then q1 else {q1 with us}
| _ ->
if is_false q1 || is_false q2 then false_ (Var.Set.union q1.us q2.us)
else if is_emp q1 then extend_us q1.us q2
else if is_emp q2 then extend_us q2.us q1
else
let us = Var.Set.union q1.us q2.us in
let q1 = freshen_xs q1 ~wrt:(Var.Set.union us q2.xs) in
let q2 = freshen_xs q2 ~wrt:(Var.Set.union us q1.xs) in
@ -474,9 +505,10 @@ let star q1 q2 =
let xs, ctx =
Context.union (Var.Set.union us (Var.Set.union xs1 xs2)) c1 c2
in
if Context.is_unsat ctx then false_ us
else
let pure = Formula.and_ p1 p2 in
if Formula.equal Formula.ff pure || Context.is_unsat ctx then
false_ us
if Formula.equal Formula.ff pure then false_ us
else
exists_fresh xs
{ us
@ -495,8 +527,8 @@ let or_ q1 q2 =
[%Trace.call fun {pf} -> pf "(%a)@ (%a)" pp_raw q1 pp_raw q2]
;
( match (q1, q2) with
| {djns= [[]]; _}, _ -> extend_us q1.us q2
| _, {djns= [[]]; _} -> extend_us q2.us q1
| _ when is_false q1 -> extend_us q1.us q2
| _ when is_false q2 -> extend_us q2.us q1
| ( ({djns= []; _} as q)
, ({us= _; xs; ctx= _; pure; heap= []; djns= [djn]} as d) )
when Var.Set.is_empty xs && Formula.(equal tt pure) ->
@ -529,7 +561,8 @@ let pure (p : Formula.t) =
Iter.fold (Context.dnf p) (false_ Var.Set.empty)
~f:(fun (xs, pure, ctx) q ->
let us = Formula.fv pure in
if Context.is_unsat ctx then extend_us us q
if Context.is_unsat ctx || Formula.equal Formula.ff pure then
extend_us us q
else or_ q (exists_fresh xs {emp with us; ctx; pure}) )
|>
[%Trace.retn fun {pf} q ->
@ -578,28 +611,7 @@ let rem_seg seg q =
let filter_heap ~f q =
{q with heap= List.filter q.heap ~f} |> check invariant
(** Query *)
let rec is_empty q =
List.is_empty q.heap && List.for_all ~f:(List.for_all ~f:is_empty) q.djns
let rec pure_approx q =
Formula.andN
( [q.pure]
|> List.fold q.heap ~f:(fun seg p -> Formula.dq0 seg.loc :: p)
|> List.fold q.djns ~f:(fun djn p ->
Formula.orN (List.map djn ~f:pure_approx) :: p ) )
let pure_approx q =
[%Trace.call fun {pf} -> pf "%a" pp q]
;
pure_approx q
|>
[%Trace.retn fun {pf} -> pf "%a" Formula.pp]
(** test if pure constraints are inconsistent with first-order consequences
of spatial constraints *)
let is_unsat q = Context.refutes q.ctx (pure_approx q)
(** Disjunctive-Normal Form *)
let fold_dnf ~conj ~disj sjn (xs, conjuncts) disjuncts =
let rec add_disjunct pending_splits sjn (xs, conjuncts) disjuncts =

Loading…
Cancel
Save