@ -37,7 +37,8 @@ let emp =
; heap = []
; djns = [] }
let false _ us = { emp with us ; djns = [ [] ] }
let false _ us =
{ emp with us ; ctx = Context . unsat ; pure = Formula . ff ; djns = [ [] ] }
(* * Traversals *)
@ -186,6 +187,9 @@ let rec pp_ ?var_strength ?vs ancestor_xs parent_ctx fs
Format . pp_open_hvbox fs 0 ;
let x v = Option . bind ~ f : ( fun ( _ , m ) -> Var . Map . find v m ) var_strength in
pp_us ~ pre : " @<2>∀ " ? vs () fs us ;
( match djns with
| [ [] ] when Option . is_some var_strength -> Format . fprintf fs " false "
| _ ->
let vs = Option . value vs ~ default : Var . Set . empty in
let xs_d_vs , xs_i_vs =
Var . Set . diff_inter
@ -222,7 +226,7 @@ let rec pp_ ?var_strength ?vs ancestor_xs parent_ctx fs
( Var . Set . union vs ( Var . Set . union us xs ) )
( Var . Set . union ancestor_xs xs )
ctx )
fs djns ;
fs djns ) ;
Format . pp_close_box fs ()
and pp_djn ? var_strength vs xs ctx fs = function
@ -260,9 +264,6 @@ let fv ?ignore_ctx ?ignore_pure q =
in
fv_union q Var . Set . empty
let invariant_pure p = assert ( not Formula . ( equal ff p ) )
let invariant_seg _ = ()
let rec invariant q =
let @ () = Invariant . invariant [ % here ] q [ % sexp_of : t ] in
let { us ; xs ; ctx ; pure ; heap ; djns } = q in
@ -278,12 +279,13 @@ let rec invariant q =
Context . invariant ctx ;
( match djns with
| [ [] ] ->
assert ( Context . is_ empty ctx ) ;
assert ( Formula . ( equal tt pure ) ) ;
assert ( Context . is_ unsat ctx ) ;
assert ( Formula . equal Formula . ff pure ) ;
assert ( List . is_empty heap )
| _ -> assert ( not ( Context . is_unsat ctx ) ) ) ;
invariant_pure pure ;
List . iter heap ~ f : invariant_seg ;
| _ ->
assert ( not ( Context . is_unsat ctx ) ) ;
assert ( not ( Formula . equal Formula . ff pure ) ) ;
assert ( not ( List . exists djns ~ f : List . is_empty ) ) ) ;
List . iter djns ~ f : ( fun djn ->
List . iter djn ~ f : ( fun sjn ->
assert ( Var . Set . subset sjn . us ~ of_ : ( Var . Set . union us xs ) ) ;
@ -293,6 +295,41 @@ let rec invariant q =
[ % Trace . info " %a " pp_raw q ] ;
Printexc . raise_with_backtrace exc bt
(* * Query *)
(* * syntactically empty: empty heap and no pure constraints *)
let is_emp q =
Context . is_empty q . ctx
&& Formula . equal Formula . tt q . pure
&& List . is_empty q . heap
&& List . is_empty q . djns
(* * ( incomplete syntactic ) test that all satisfying heaps are empty *)
let rec is_empty q =
List . is_empty q . heap && List . for_all ~ f : ( List . for_all ~ f : is_empty ) q . djns
(* * syntactically inconsistent *)
let is_false q = match q . djns with [ [] ] -> true | _ -> false
(* * first-order approximation of heap constraints *)
let rec pure_approx q =
Formula . andN
( [ q . pure ]
| > List . fold q . heap ~ f : ( fun seg p -> Formula . dq0 seg . loc :: p )
| > List . fold q . djns ~ f : ( fun djn p ->
Formula . orN ( List . map djn ~ f : pure_approx ) :: p ) )
let pure_approx q =
[ % Trace . call fun { pf } -> pf " %a " pp q ]
;
pure_approx q
| >
[ % Trace . retn fun { pf } -> pf " %a " Formula . pp ]
(* * test if pure constraints are inconsistent with first-order consequences
of spatial constraints * )
let is_unsat q = Context . refutes q . ctx ( pure_approx q )
(* * Quantification and Vocabulary *)
let exists_fresh xs q =
@ -330,11 +367,15 @@ let elim_exists xs q =
let map ~ f_sjn ~ f_ctx ~ f_trm ~ f_fml ( { us ; xs = _ ; ctx ; pure ; heap ; djns } as q )
=
let pure = f_fml pure in
if Formula . ( equal ff pure ) then false _ us
if Formula . equal Formula . ff pure then false _ us
else
let xs , ctx = f_ctx ctx in
let heap = List . map_endo heap ~ f : ( map_seg ~ f : f_trm ) in
if Context . is_unsat ctx then false _ us
else
let djns = List . map_endo djns ~ f : ( List . map_endo ~ f : f_sjn ) in
if List . exists ~ f : List . is_empty djns then false _ us
else
let heap = List . map_endo heap ~ f : ( map_seg ~ f : f_trm ) in
if
ctx = = q . ctx
&& pure = = q . pure
@ -437,9 +478,7 @@ let and_ctx_ ctx q =
let and_ctx ctx q =
[ % Trace . call fun { pf } -> pf " %a@ %a " Context . pp ctx pp q ]
;
( match q . djns with
| [ [] ] -> q
| _ -> and_ctx_ ctx ( extend_us ( Context . fv ctx ) q ) )
( if is_false q then q else and_ctx_ ctx ( extend_us ( Context . fv ctx ) q ) )
| >
[ % Trace . retn fun { pf } q ->
pf " %a " pp q ;
@ -453,18 +492,10 @@ let star q1 q2 =
invariant q ;
assert ( Var . Set . equal q . us ( Var . Set . union q1 . us q2 . us ) ) )
@@ fun () ->
match ( q1 , q2 ) with
| { djns = [ [] ] ; _ } , _ | _ , { djns = [ [] ] ; _ } ->
false _ ( Var . Set . union q1 . us q2 . us )
| { us = _ ; xs = _ ; ctx ; pure ; heap = [] ; djns = [] } , _
when Context . is_empty ctx && Formula . ( equal tt pure ) ->
let us = Var . Set . union q1 . us q2 . us in
if us = = q2 . us then q2 else { q2 with us }
| _ , { us = _ ; xs = _ ; ctx ; pure ; heap = [] ; djns = [] }
when Context . is_empty ctx && Formula . ( equal tt pure ) ->
let us = Var . Set . union q1 . us q2 . us in
if us = = q1 . us then q1 else { q1 with us }
| _ ->
if is_false q1 | | is_false q2 then false _ ( Var . Set . union q1 . us q2 . us )
else if is_emp q1 then extend_us q1 . us q2
else if is_emp q2 then extend_us q2 . us q1
else
let us = Var . Set . union q1 . us q2 . us in
let q1 = freshen_xs q1 ~ wrt : ( Var . Set . union us q2 . xs ) in
let q2 = freshen_xs q2 ~ wrt : ( Var . Set . union us q1 . xs ) in
@ -474,9 +505,10 @@ let star q1 q2 =
let xs , ctx =
Context . union ( Var . Set . union us ( Var . Set . union xs1 xs2 ) ) c1 c2
in
if Context . is_unsat ctx then false _ us
else
let pure = Formula . and_ p1 p2 in
if Formula . equal Formula . ff pure | | Context . is_unsat ctx then
false _ us
if Formula . equal Formula . ff pure then false _ us
else
exists_fresh xs
{ us
@ -495,8 +527,8 @@ let or_ q1 q2 =
[ % Trace . call fun { pf } -> pf " (%a)@ (%a) " pp_raw q1 pp_raw q2 ]
;
( match ( q1 , q2 ) with
| {djns = [ [] ] ; _ } , _ -> extend_us q1 . us q2
| _ , { djns = [ [] ] ; _ } -> extend_us q2 . us q1
| _ when is_false q1 -> extend_us q1 . us q2
| _ when is_false q2 -> extend_us q2 . us q1
| ( ( { djns = [] ; _ } as q )
, ( { us = _ ; xs ; ctx = _ ; pure ; heap = [] ; djns = [ djn ] } as d ) )
when Var . Set . is_empty xs && Formula . ( equal tt pure ) ->
@ -529,7 +561,8 @@ let pure (p : Formula.t) =
Iter . fold ( Context . dnf p ) ( false _ Var . Set . empty )
~ f : ( fun ( xs , pure , ctx ) q ->
let us = Formula . fv pure in
if Context . is_unsat ctx then extend_us us q
if Context . is_unsat ctx | | Formula . equal Formula . ff pure then
extend_us us q
else or_ q ( exists_fresh xs { emp with us ; ctx ; pure } ) )
| >
[ % Trace . retn fun { pf } q ->
@ -578,28 +611,7 @@ let rem_seg seg q =
let filter_heap ~ f q =
{ q with heap = List . filter q . heap ~ f } | > check invariant
(* * Query *)
let rec is_empty q =
List . is_empty q . heap && List . for_all ~ f : ( List . for_all ~ f : is_empty ) q . djns
let rec pure_approx q =
Formula . andN
( [ q . pure ]
| > List . fold q . heap ~ f : ( fun seg p -> Formula . dq0 seg . loc :: p )
| > List . fold q . djns ~ f : ( fun djn p ->
Formula . orN ( List . map djn ~ f : pure_approx ) :: p ) )
let pure_approx q =
[ % Trace . call fun { pf } -> pf " %a " pp q ]
;
pure_approx q
| >
[ % Trace . retn fun { pf } -> pf " %a " Formula . pp ]
(* * test if pure constraints are inconsistent with first-order consequences
of spatial constraints * )
let is_unsat q = Context . refutes q . ctx ( pure_approx q )
(* * Disjunctive-Normal Form *)
let fold_dnf ~ conj ~ disj sjn ( xs , conjuncts ) disjuncts =
let rec add_disjunct pending_splits sjn ( xs , conjuncts ) disjuncts =