@ -33,6 +33,159 @@ type register = ToplAst.register_name [@@deriving compare]
type configuration = { vertex : vertex ; memory : ( register * value ) list } [ @@ deriving compare ]
type configuration = { vertex : vertex ; memory : ( register * value ) list } [ @@ deriving compare ]
type substitution = ( AbstractValue . t * ValueHistory . t ) AbstractValue . Map . t
type ' a substitutor = substitution * ' a -> substitution * ' a
let sub_value ( sub , value ) =
match AbstractValue . Map . find_opt value sub with
| Some ( v , _ history ) ->
( sub , v )
| None ->
let v = AbstractValue . mk_fresh () in
let sub = AbstractValue . Map . add value ( v , [] ) sub in
( sub , v )
let sub_list : ' a substitutor -> ' a list substitutor =
fun sub_elem ( sub , xs ) ->
let f ( sub , xs ) x =
let sub , x = sub_elem ( sub , x ) in
( sub , x :: xs )
in
let sub , xs = List . fold ~ init : ( sub , [] ) ~ f xs in
( sub , List . rev xs )
module Constraint : sig
type predicate
type t [ @@ deriving compare ]
type operand = PathCondition . operand
val make : Binop . t -> operand -> operand -> predicate
val true _ : t
val and_predicate : predicate -> t -> t
val and_constr : t -> t -> t
val and_n : t list -> t
val normalize : t -> t
val negate : t list -> t list
(* * computes ¬ ( c1∨ ...∨ cm ) as d1∨ ...∨ dn, where n=|c1|x...x|cm| *)
val eliminate_exists : keep : AbstractValue . Set . t -> t -> t
(* * quantifier elimination *)
val size : t -> int
val substitute : t substitutor
val prune_path : t -> PathCondition . t -> PathCondition . t
val pp : Format . formatter -> t -> unit
end = struct
type predicate = Binop . t * PathCondition . operand * PathCondition . operand [ @@ deriving compare ]
type t = predicate list [ @@ deriving compare ]
type operand = PathCondition . operand
let make binop lhs rhs = ( binop , lhs , rhs )
let true _ = []
let is_trivially_true ( predicate : predicate ) =
match predicate with
| Eq , AbstractValueOperand l , AbstractValueOperand r when AbstractValue . equal l r ->
true
| _ ->
false
let and_predicate predicate constr =
if is_trivially_true predicate then constr else predicate :: constr
let and_constr constr_a constr_b = List . rev_append constr_a constr_b
let and_n constraints = List . concat_no_order constraints
let normalize constr = List . dedup_and_sort ~ compare : compare_predicate constr
let negate_predicate ( predicate : predicate ) : predicate =
match predicate with
| Eq , l , r ->
( Ne , l , r )
| Ne , l , r ->
( Eq , l , r )
| Ge , l , r ->
( Lt , r , l )
| Gt , l , r ->
( Le , r , l )
| Le , l , r ->
( Gt , r , l )
| Lt , l , r ->
( Ge , r , l )
| _ ->
L . die InternalError
" PulseTopl.negate_predicate should handle all outputs of ToplUtils.binop_to "
let negate disjunction = IList . product ( List . map ~ f : ( List . map ~ f : negate_predicate ) disjunction )
let size constr = List . length constr
let substitute_predicate ( sub , predicate ) =
let avo x : PathCondition . operand = AbstractValueOperand x in
match ( predicate : predicate ) with
| op , AbstractValueOperand l , AbstractValueOperand r ->
let sub , l = sub_value ( sub , l ) in
let sub , r = sub_value ( sub , r ) in
( sub , ( op , avo l , avo r ) )
| op , AbstractValueOperand l , r ->
let sub , l = sub_value ( sub , l ) in
( sub , ( op , avo l , r ) )
| op , l , AbstractValueOperand r ->
let sub , r = sub_value ( sub , r ) in
( sub , ( op , l , avo r ) )
| _ ->
( sub , predicate )
let substitute = sub_list substitute_predicate
let prune_path constr path_condition =
let f path_condition ( op , l , r ) =
let path_condition , _ new_eqs =
PathCondition . prune_binop ~ negated : false op l r path_condition
in
path_condition
in
List . fold ~ init : path_condition ~ f constr
let pp_predicate f ( op , l , r ) =
Format . fprintf f " @[%a%a%a@] " PathCondition . pp_operand l Binop . pp op PathCondition . pp_operand r
let pp = Pp . seq ~ sep : " ∧ " pp_predicate
let eliminate_exists ~ keep constr =
(* TODO ( rgrigore ) : replace the current weak approximation *)
let is_live_operand =
PathCondition . (
function LiteralOperand _ -> true | AbstractValueOperand v -> AbstractValue . Set . mem v keep )
in
let is_live_predicate ( _ op , l , r ) = is_live_operand l && is_live_operand r in
List . filter ~ f : is_live_predicate constr
end
type predicate = Binop . t * PathCondition . operand * PathCondition . operand [ @@ deriving compare ]
type predicate = Binop . t * PathCondition . operand * PathCondition . operand [ @@ deriving compare ]
type step =
type step =
@ -45,7 +198,7 @@ and step_data = SmallStep of event | LargeStep of (Procname.t * (* post *) simpl
and simple_state =
and simple_state =
{ pre : configuration (* * at the start of the procedure *)
{ pre : configuration (* * at the start of the procedure *)
; post : configuration (* * at the current program point *)
; post : configuration (* * at the current program point *)
; pruned : predicate lis t (* * path-condition for the automaton *)
; pruned : Constraint . t (* * path-condition for the automaton *)
; last_step : step option [ @ compare . ignore ] (* * for trace error reporting *) }
; last_step : step option [ @ compare . ignore ] (* * for trace error reporting *) }
[ @@ deriving compare ]
[ @@ deriving compare ]
@ -53,10 +206,6 @@ and simple_state =
(* TODO: limit the number of simple_states to some configurable number ( default ~5 ) *)
(* TODO: limit the number of simple_states to some configurable number ( default ~5 ) *)
type state = simple_state list
type state = simple_state list
let pp_predicate f ( op , l , r ) =
Format . fprintf f " @[%a%a%a@] " PathCondition . pp_operand l Binop . pp op PathCondition . pp_operand r
let pp_mapping f ( x , value ) = Format . fprintf f " @[%s↦%a@]@, " x AbstractValue . pp value
let pp_mapping f ( x , value ) = Format . fprintf f " @[%s↦%a@]@, " x AbstractValue . pp value
let pp_memory f memory = Format . fprintf f " @[<2>[%a]@] " ( pp_comma_seq pp_mapping ) memory
let pp_memory f memory = Format . fprintf f " @[<2>[%a]@] " ( pp_comma_seq pp_mapping ) memory
@ -67,7 +216,7 @@ let pp_configuration f {vertex; memory} =
let pp_simple_state f { pre ; post ; pruned } =
let pp_simple_state f { pre ; post ; pruned } =
Format . fprintf f " @[<2>{ topl-simple-state@;pre=%a@;post=%a@;pruned=(%a) }@] " pp_configuration pre
Format . fprintf f " @[<2>{ topl-simple-state@;pre=%a@;post=%a@;pruned=(%a) }@] " pp_configuration pre
pp_configuration post ( Pp . seq ~ sep : " ∧ " pp_predicate ) pruned
pp_configuration post Constraint . pp pruned
let pp_state f = Format . fprintf f " @[<2>[ %a ]@] " ( pp_comma_seq pp_simple_state )
let pp_state f = Format . fprintf f " @[<2>[ %a ]@] " ( pp_comma_seq pp_simple_state )
@ -83,7 +232,9 @@ let start () =
let f acc vertex = { vertex ; memory } :: acc in
let f acc vertex = { vertex ; memory } :: acc in
IContainer . forto n ~ init : [] ~ f
IContainer . forto n ~ init : [] ~ f
in
in
List . map ~ f : ( fun c -> { pre = c ; post = c ; pruned = [] ; last_step = None } ) configurations
List . map
~ f : ( fun c -> { pre = c ; post = c ; pruned = Constraint . true_ ; last_step = None } )
configurations
in
in
if Topl . is_deep_active () then mk_simple_states () else (* Avoids work later *) []
if Topl . is_deep_active () then mk_simple_states () else (* Avoids work later *) []
@ -98,15 +249,7 @@ let get env x =
let set = List . Assoc . add ~ equal : String . equal
let set = List . Assoc . add ~ equal : String . equal
let is_trivially_true ( predicate : predicate ) =
let eval_guard memory tcontext guard : Constraint . t =
match predicate with
| Eq , AbstractValueOperand l , AbstractValueOperand r when AbstractValue . equal l r ->
true
| _ ->
false
let eval_guard memory tcontext guard =
let operand_of_value ( value : ToplAst . value ) : PathCondition . operand =
let operand_of_value ( value : ToplAst . value ) : PathCondition . operand =
match value with
match value with
| Constant ( LiteralInt x ) ->
| Constant ( LiteralInt x ) ->
@ -116,20 +259,19 @@ let eval_guard memory tcontext guard =
| Binding v ->
| Binding v ->
AbstractValueOperand ( get tcontext v )
AbstractValueOperand ( get tcontext v )
in
in
let add predicate pruned = if is_trivially_true predicate then pruned else predicate :: pruned in
let conjoin_predicate pruned ( predicate : ToplAst . predicate ) =
let conjoin_predicate pruned ( predicate : ToplAst . predicate ) =
match predicate with
match predicate with
| Binop ( binop , l , r ) ->
| Binop ( binop , l , r ) ->
let l = operand_of_value l in
let l = operand_of_value l in
let r = operand_of_value r in
let r = operand_of_value r in
let binop = ToplUtils . binop_to binop in
let binop = ToplUtils . binop_to binop in
a dd ( binop , l , r ) pruned
Constraint . a n d_pre dicate ( Constraint . make binop l r ) pruned
| Value v ->
| Value v ->
let v = operand_of_value v in
let v = operand_of_value v in
let one = PathCondition . LiteralOperand IntLit . one in
let one = PathCondition . LiteralOperand IntLit . one in
a dd ( Binop. Ne , v , one ) pruned
Constraint . a n d_pre dicate ( Constraint. make Binop. Ne v one ) pruned
in
in
List . fold ~ init : [] ~ f : conjoin_predicate guard
List . fold ~ init : Constraint . true_ ~ f : conjoin_predicate guard
let apply_action tcontext assignments memory =
let apply_action tcontext assignments memory =
@ -211,48 +353,17 @@ let static_match event : (ToplAutomaton.transition * tcontext) list =
ToplAutomaton . tfilter_map ( Topl . automaton () ) ~ f : match_one
ToplAutomaton . tfilter_map ( Topl . automaton () ) ~ f : match_one
let conjoin_pruned path_condition pruned =
let f path_condition ( op , l , r ) =
let path_condition , _ new_eqs = PathCondition . prune_binop ~ negated : false op l r path_condition in
path_condition
in
List . fold ~ init : path_condition ~ f pruned
let is_unsat_cheap path_condition pruned =
let is_unsat_cheap path_condition pruned =
PathCondition . is_unsat_cheap ( conjoin_pruned path_condition pruned )
PathCondition . is_unsat_cheap ( Constraint . prune_path pruned path_condition )
let is_unsat_expensive path_condition pruned =
let is_unsat_expensive path_condition pruned =
let _ path_condition , unsat , _ new_eqs =
let _ path_condition , unsat , _ new_eqs =
PathCondition . is_unsat_expensive ( conjoin_pruned path_condition pruned )
PathCondition . is_unsat_expensive ( Constraint . prune_path pruned path_condition )
in
in
unsat
unsat
let negate_predicate ( predicate : predicate ) : predicate =
match predicate with
| Eq , l , r ->
( Ne , l , r )
| Ne , l , r ->
( Eq , l , r )
| Ge , l , r ->
( Lt , r , l )
| Gt , l , r ->
( Le , r , l )
| Le , l , r ->
( Gt , r , l )
| Lt , l , r ->
( Ge , r , l )
| _ ->
L . die InternalError
" PulseTopl.negate_predicate should handle all outputs of ToplUtils.binop_to "
let skip_pruned_of_nonskip_pruned nonskip_list =
IList . product ( List . map ~ f : ( List . map ~ f : negate_predicate ) nonskip_list )
let drop_infeasible ? ( expensive = false ) path_condition state =
let drop_infeasible ? ( expensive = false ) path_condition state =
let is_unsat = if expensive then is_unsat_expensive else is_unsat_cheap in
let is_unsat = if expensive then is_unsat_expensive else is_unsat_cheap in
let f { pruned } = not ( is_unsat path_condition pruned ) in
let f { pruned } = not ( is_unsat path_condition pruned ) in
@ -263,19 +374,17 @@ let normalize_memory memory = List.sort ~compare:[%compare: register * value] me
let normalize_configuration { vertex ; memory } = { vertex ; memory = normalize_memory memory }
let normalize_configuration { vertex ; memory } = { vertex ; memory = normalize_memory memory }
let normalize_pruned pruned = List . dedup_and_sort ~ compare : compare_predicate pruned
let normalize_simple_state { pre ; post ; pruned ; last_step } =
let normalize_simple_state { pre ; post ; pruned ; last_step } =
{ pre = normalize_configuration pre
{ pre = normalize_configuration pre
; post = normalize_configuration post
; post = normalize_configuration post
; pruned = normalize _pruned pruned
; pruned = Constraint . normalize pruned
; last_step }
; last_step }
let normalize_state state = List . map ~ f : normalize_simple_state state
let normalize_state state = List . map ~ f : normalize_simple_state state
let apply_conjuncts_limit state =
let apply_conjuncts_limit state =
let f simple_state = List. length simple_state . pruned < = Config . topl_max_conjuncts in
let f simple_state = Constraint. size simple_state . pruned < = Config . topl_max_conjuncts in
IList . filter_changed ~ f state
IList . filter_changed ~ f state
@ -283,7 +392,7 @@ let apply_disjuncts_limit state =
if List . length state < = Config . topl_max_disjuncts then state
if List . length state < = Config . topl_max_disjuncts then state
else
else
let new_len = ( Config . topl_max_disjuncts / 2 ) + 1 in
let new_len = ( Config . topl_max_disjuncts / 2 ) + 1 in
let add_score simple_state = ( List. length simple_state . pruned , simple_state ) in
let add_score simple_state = ( Constraint. size simple_state . pruned , simple_state ) in
let compare_score ( score1 , _ simple_state1 ) ( score2 , _ simple_state2 ) =
let compare_score ( score1 , _ simple_state1 ) ( score2 , _ simple_state2 ) =
Int . compare score1 score2
Int . compare score1 score2
in
in
@ -298,7 +407,7 @@ let small_step loc path_condition event simple_states =
let simple_states = apply_limits simple_states in
let simple_states = apply_limits simple_states in
let tmatches = static_match event in
let tmatches = static_match event in
let evolve_transition ( old : simple_state ) ( transition , tcontext ) : state =
let evolve_transition ( old : simple_state ) ( transition , tcontext ) : state =
let mk ? ( memory = old . post . memory ) ? ( pruned = [] ) significant =
let mk ? ( memory = old . post . memory ) ? ( pruned = Constraint . true_ ) significant =
let last_step =
let last_step =
if significant then
if significant then
Some { step_location = loc ; step_predecessor = old ; step_data = SmallStep event }
Some { step_location = loc ; step_predecessor = old ; step_data = SmallStep event }
@ -321,7 +430,7 @@ let small_step loc path_condition event simple_states =
[ mk ~ memory ~ pruned true ]
[ mk ~ memory ~ pruned true ]
in
in
let evolve_simple_state old =
let evolve_simple_state old =
let path_condition = conjoin_pruned path_condition old . pruned in
let path_condition = Constraint . prune_path old . pruned path_condition in
let tmatches =
let tmatches =
List . filter ~ f : ( fun ( t , _ ) -> Int . equal old . post . vertex t . ToplAutomaton . source ) tmatches
List . filter ~ f : ( fun ( t , _ ) -> Int . equal old . post . vertex t . ToplAutomaton . source ) tmatches
in
in
@ -329,12 +438,12 @@ let small_step loc path_condition event simple_states =
drop_infeasible path_condition ( List . concat_map ~ f : ( evolve_transition old ) tmatches )
drop_infeasible path_condition ( List . concat_map ~ f : ( evolve_transition old ) tmatches )
in
in
let skip =
let skip =
let nonskip_ prune d_l ist = List . map ~ f : ( fun { pruned } -> pruned ) nonskip in
let nonskip_ disjunc tion = List . map ~ f : ( fun { pruned } -> pruned ) nonskip in
let skip_ pruned_list = skip_pruned_of_nonskip_pruned nonskip_pruned_list in
let skip_ disjunction = Constraint . negate nonskip_disjunction in
let f pruned = { old with pruned } (* keeps last_step from old *) in
let f pruned = { old with pruned } (* keeps last_step from old *) in
drop_infeasible path_condition ( List . map ~ f skip_ prune d_l ist)
drop_infeasible path_condition ( List . map ~ f skip_ disjunc tion )
in
in
let add_old_pruned s = { s with pruned = List. rev_append s . pruned old . pruned } in
let add_old_pruned s = { s with pruned = Constraint. and_constr s . pruned old . pruned } in
List . map ~ f : add_old_pruned ( List . rev_append nonskip skip )
List . map ~ f : add_old_pruned ( List . rev_append nonskip skip )
in
in
let result = List . concat_map ~ f : evolve_simple_state simple_states in
let result = List . concat_map ~ f : evolve_simple_state simple_states in
@ -342,25 +451,6 @@ let small_step loc path_condition event simple_states =
result
result
let sub_value ( sub , value ) =
match AbstractValue . Map . find_opt value sub with
| Some ( v , _ history ) ->
( sub , v )
| None ->
let v = AbstractValue . mk_fresh () in
let sub = AbstractValue . Map . add value ( v , [] ) sub in
( sub , v )
let sub_list sub_elem ( sub , xs ) =
let f ( sub , xs ) x =
let sub , x = sub_elem ( sub , x ) in
( sub , x :: xs )
in
let sub , xs = List . fold ~ init : ( sub , [] ) ~ f xs in
( sub , List . rev xs )
let of_unequal ( or_unequal : ' a List . Or_unequal_lengths . t ) =
let of_unequal ( or_unequal : ' a List . Or_unequal_lengths . t ) =
match or_unequal with
match or_unequal with
| Ok x ->
| Ok x ->
@ -376,30 +466,11 @@ let sub_configuration (sub, {vertex; memory}) =
( sub , { vertex ; memory } )
( sub , { vertex ; memory } )
let sub_predicate ( sub , predicate ) =
let avo x : PathCondition . operand = AbstractValueOperand x in
match ( predicate : predicate ) with
| op , AbstractValueOperand l , AbstractValueOperand r ->
let sub , l = sub_value ( sub , l ) in
let sub , r = sub_value ( sub , r ) in
( sub , ( op , avo l , avo r ) )
| op , AbstractValueOperand l , r ->
let sub , l = sub_value ( sub , l ) in
( sub , ( op , avo l , r ) )
| op , l , AbstractValueOperand r ->
let sub , r = sub_value ( sub , r ) in
( sub , ( op , l , avo r ) )
| _ ->
( sub , predicate )
let sub_pruned = sub_list sub_predicate
(* Does not substitute in [last_step]: not usually needed, and takes much time. *)
(* Does not substitute in [last_step]: not usually needed, and takes much time. *)
let sub_simple_state ( sub , { pre ; post ; pruned ; last_step } ) =
let sub_simple_state ( sub , { pre ; post ; pruned ; last_step } ) =
let sub , pre = sub_configuration ( sub , pre ) in
let sub , pre = sub_configuration ( sub , pre ) in
let sub , post = sub_configuration ( sub , post ) in
let sub , post = sub_configuration ( sub , post ) in
let sub , pruned = sub_pruned ( sub , pruned ) in
let sub , pruned = Constraint . substitute ( sub , pruned ) in
( sub , { pre ; post ; pruned ; last_step } )
( sub , { pre ; post ; pruned ; last_step } )
@ -413,7 +484,7 @@ let large_step ~call_location ~callee_proc_name ~substitution ~condition ~callee
equalities , because a growing [ pruned ] leads to quadratic behaviour . * )
equalities , because a growing [ pruned ] leads to quadratic behaviour . * )
let mk_eq val1 val2 =
let mk_eq val1 val2 =
let op x = PathCondition . AbstractValueOperand x in
let op x = PathCondition . AbstractValueOperand x in
( Binop . Eq , op val1 , op val2 )
Constraint . make Binop . Eq ( op val1 ) ( op val2 )
in
in
let f ( sub , eqs ) ( reg1 , val1 ) ( reg2 , val2 ) =
let f ( sub , eqs ) ( reg1 , val1 ) ( reg2 , val2 ) =
if not ( String . equal reg1 reg2 ) then
if not ( String . equal reg1 reg2 ) then
@ -423,14 +494,14 @@ let large_step ~call_location ~callee_proc_name ~substitution ~condition ~callee
match AbstractValue . Map . find_opt val2 sub with
match AbstractValue . Map . find_opt val2 sub with
| Some ( old_val1 , _ history ) ->
| Some ( old_val1 , _ history ) ->
if AbstractValue . equal old_val1 val1 then ( sub , eqs )
if AbstractValue . equal old_val1 val1 then ( sub , eqs )
else ( sub , mk_eq old_val1 val1 :: eqs )
else ( sub , Constraint . and_predicate ( mk_eq old_val1 val1 ) eqs )
| None ->
| None ->
( AbstractValue . Map . add val2 ( val1 , [] ) sub , eqs )
( AbstractValue . Map . add val2 ( val1 , [] ) sub , eqs )
in
in
of_unequal ( List . fold2 p . post . memory q . pre . memory ~ init : ( substitution , [] ) ~ f )
of_unequal ( List . fold2 p . post . memory q . pre . memory ~ init : ( substitution , Constraint . true_ ) ~ f )
in
in
let _ substitution , q = sub_simple_state ( substitution , q ) in
let _ substitution , q = sub_simple_state ( substitution , q ) in
let pruned = new_eqs @ q . pruned @ p . pruned in
let pruned = Constraint . and_n [ new_eqs ; q . pruned ; p . pruned ] in
let last_step =
let last_step =
Some
Some
{ step_location = call_location
{ step_location = call_location
@ -460,12 +531,7 @@ let simplify ~keep state =
List . fold ~ init : keep ~ f : ( fun keep ( _ reg , value ) -> AbstractValue . Set . add value keep ) memory
List . fold ~ init : keep ~ f : ( fun keep ( _ reg , value ) -> AbstractValue . Set . add value keep ) memory
in
in
let keep = keep | > collect pre . memory | > collect post . memory in
let keep = keep | > collect pre . memory | > collect post . memory in
let is_live_operand =
let pruned = Constraint . eliminate_exists ~ keep pruned in
PathCondition . (
function LiteralOperand _ -> true | AbstractValueOperand v -> AbstractValue . Set . mem v keep )
in
let is_live_predicate ( _ op , l , r ) = is_live_operand l && is_live_operand r in
let pruned = List . filter ~ f : is_live_predicate pruned in
{ pre ; post ; pruned ; last_step }
{ pre ; post ; pruned ; last_step }
in
in
let state = List . map ~ f : simplify_simple_state state in
let state = List . map ~ f : simplify_simple_state state in