@ -968,7 +968,7 @@ let rec solve_pending s soln =
| { solved = None } -> None )
| [] -> Some soln
let solve_seq_eq ~ wrt us e' f' subst =
let solve_seq_eq us e' f' subst =
[ % Trace . call fun { pf } -> pf " @ %a = %a " Trm . pp e' Trm . pp f' ]
;
let x_ito_us x u =
@ -983,7 +983,7 @@ let solve_seq_eq ~wrt us e' f' subst =
in
solve_pending
( solve_concat ms a n
{ wrt
{ wrt = Var . Set . empty
; no_fresh = true
; fresh = Var . Set . empty
; solved = Some []
@ -1004,14 +1004,14 @@ let solve_seq_eq ~wrt us e' f' subst =
[ % Trace . retn fun { pf } subst' ->
pf " @[%a@] " Subst . pp_diff ( subst , Option . value subst' ~ default : subst ) ]
let solve_interp_eq ~ wrt us e' ( cls , subst ) =
let solve_interp_eq us e' ( cls , subst ) =
[ % Trace . call fun { pf } ->
pf " @ trm: @[%a@]@ cls: @[%a@]@ subst: @[%a@] " Trm . pp e' Cls . pp cls
Subst . pp subst ]
;
Iter . find_map ( Cls . to_iter cls ) ~ f : ( fun f ->
let f' = Subst . norm subst f in
match solve_seq_eq ~ wrt us e' f' subst with
match solve_seq_eq us e' f' subst with
| Some subst -> Some subst
| None -> solve_poly_eq us e' f' subst )
| >
@ -1023,7 +1023,7 @@ let solve_interp_eq ~wrt us e' (cls, subst) =
and can be expressed , after normalizing with [ subst ] , as [ x ↦ u ] where
[ us ∪ xs ⊇ fv x ⊈ us ] and [ fv u ⊆ us ] or else
[ fv u ⊆ us ∪ xs ] * )
let rec solve_interp_eqs ~ wrt us ( cls , subst ) =
let rec solve_interp_eqs us ( cls , subst ) =
[ % Trace . call fun { pf } ->
pf " @ cls: @[%a@]@ subst: @[%a@] " Cls . pp cls Subst . pp subst ]
;
@ -1033,13 +1033,13 @@ let rec solve_interp_eqs ~wrt us (cls, subst) =
| Some ( trm , cls ) ->
let trm' = Subst . norm subst trm in
if is_interpreted trm' then
match solve_interp_eq ~ wrt us trm' ( cls , subst ) with
match solve_interp_eq us trm' ( cls , subst ) with
| Some subst -> solve_interp_eqs_ cls' ( cls , subst )
| None -> solve_interp_eqs_ ( Cls . add trm' cls' ) ( cls , subst )
else solve_interp_eqs_ ( Cls . add trm' cls' ) ( cls , subst )
in
let cls' , subst' = solve_interp_eqs_ Cls . empty ( cls , subst ) in
( if subst' != subst then solve_interp_eqs ~ wrt us ( cls' , subst' )
( if subst' != subst then solve_interp_eqs us ( cls' , subst' )
else ( cls' , subst' ) )
| >
[ % Trace . retn fun { pf } ( cls' , subst' ) ->
@ -1132,7 +1132,7 @@ let solve_uninterp_eqs us (cls, subst) =
[ subst ] which can be expressed , after normalizing with [ subst ] , as
[ x ↦ u ] where [ us ∪ xs ⊇ fv x ⊈ us ] and [ fv u ⊆ us ] or else
[ fv u ⊆ us ∪ xs ] * )
let solve_class ~ wrt us us_xs ~ key : rep ~ data : cls ( classes , subst ) =
let solve_class us us_xs ~ key : rep ~ data : cls ( classes , subst ) =
let classes0 = classes in
[ % Trace . call fun { pf } ->
pf " @ rep: @[%a@]@ cls: @[%a@]@ subst: @[%a@] " Trm . pp rep Cls . pp cls
@ -1143,7 +1143,7 @@ let solve_class ~wrt us us_xs ~key:rep ~data:cls (classes, subst) =
~ f : ( fun e -> Var . Set . subset ( Trm . fv e ) ~ of_ : us_xs )
( Cls . add rep cls )
in
let cls , subst = solve_interp_eqs ~ wrt us ( cls , subst ) in
let cls , subst = solve_interp_eqs us ( cls , subst ) in
let cls , subst = solve_uninterp_eqs us ( cls , subst ) in
let cls = Cls . union cls_not_ito_us_xs cls in
let cls = Cls . remove ( Subst . norm subst rep ) cls in
@ -1219,13 +1219,13 @@ let solve_for_xs r us xs =
(* * move equations from [classes] to [subst] which can be expressed, after
normalizing with [ subst ] , as [ x ↦ u ] where [ us ∪ xs ⊇ fv x ⊈ us ]
and [ fv u ⊆ us ] or else [ fv u ⊆ us ∪ xs ] . * )
let solve_classes ~ wrt r xs ( classes , subst , us ) =
let solve_classes r xs ( classes , subst , us ) =
[ % Trace . call fun { pf } ->
pf " @ us: {@[%a@]}@ xs: {@[%a@]} " Var . Set . pp us Var . Set . pp xs ]
;
let rec solve_classes_ ( classes0 , subst0 , us_xs ) =
let classes , subst =
Trm . Map . fold ~ f : ( solve_class ~ wrt us us_xs ) classes0 ( classes0 , subst0 )
Trm . Map . fold ~ f : ( solve_class us us_xs ) classes0 ( classes0 , subst0 )
in
if subst != subst0 then solve_classes_ ( classes , subst , us_xs )
else ( classes , subst , us_xs )
@ -1253,12 +1253,10 @@ let solve_for_vars vss r =
pf " @ %a@ @[%a@] " pp_vss vss pp r ;
invariant r ]
;
let wrt = Var . Set . union_list vss in
let us , vss =
match vss with us :: vss -> ( us , vss ) | [] -> ( Var . Set . empty , vss )
in
List . fold ~ f : ( solve_classes ~ wrt r ) vss ( classes r , Subst . empty , us )
| > snd3
List . fold ~ f : ( solve_classes r ) vss ( classes r , Subst . empty , us ) | > snd3
| >
[ % Trace . retn fun { pf } subst ->
pf " %a " Subst . pp subst ;