[sledge] Rename gt0 to pos and remove le0, ge0, lt0

Summary:
The unary comparison to zero predicates are confusing to read since
whether the 0 is the left or right argument of the naturally infix
comparison is ambiguous. So replace Gt0 with Pos, meaning the argument
is positive, and remove the rest.

Reviewed By: jvillard

Differential Revision: D24306067

fbshipit-source-id: 2bd30dbe4
master
Josh Berdine 4 years ago committed by Facebook GitHub Bot
parent 5fac93bd44
commit 78a3dee2d9

@ -261,7 +261,7 @@ module Fml : sig
| Eq of trm * trm | Eq of trm * trm
(* arithmetic *) (* arithmetic *)
| Eq0 of trm (** [Eq0(x)] iff x = 0 *) | Eq0 of trm (** [Eq0(x)] iff x = 0 *)
| Gt0 of trm (** [Gt0(x)] iff x > 0 *) | Pos of trm (** [Pos(x)] iff x > 0 *)
(* propositional connectives *) (* propositional connectives *)
| Not of fml | Not of fml
| And of fml * fml | And of fml * fml
@ -275,7 +275,7 @@ module Fml : sig
val _Tt : fml val _Tt : fml
val _Eq : trm -> trm -> fml val _Eq : trm -> trm -> fml
val _Eq0 : trm -> fml val _Eq0 : trm -> fml
val _Gt0 : trm -> fml val _Pos : trm -> fml
val _Not : fml -> fml val _Not : fml -> fml
val _And : fml -> fml -> fml val _And : fml -> fml -> fml
val _Or : fml -> fml -> fml val _Or : fml -> fml -> fml
@ -287,7 +287,7 @@ end = struct
| Tt | Tt
| Eq of trm * trm | Eq of trm * trm
| Eq0 of trm | Eq0 of trm
| Gt0 of trm | Pos of trm
| Not of fml | Not of fml
| And of fml * fml | And of fml * fml
| Or of fml * fml | Or of fml * fml
@ -349,11 +349,11 @@ end = struct
| SynGt -> Eq (y, x) ) | SynGt -> Eq (y, x) )
|> check invariant |> check invariant
let _Gt0 x = let _Pos x =
( match x with ( match x with
| Z z -> if Z.gt z Z.zero then Tt else _Ff | Z z -> if Z.gt z Z.zero then Tt else _Ff
| Q q -> if Q.gt q Q.zero then Tt else _Ff | Q q -> if Q.gt q Q.zero then Tt else _Ff
| x -> Gt0 x ) | x -> Pos x )
|> check invariant |> check invariant
let _Lit p xs = Lit (p, xs) |> check invariant let _Lit p xs = Lit (p, xs) |> check invariant
@ -429,7 +429,7 @@ end = struct
| And (x, y) -> _Or (_Not x) (_Not y) | And (x, y) -> _Or (_Not x) (_Not y)
| Or (x, y) -> _And (_Not x) (_Not y) | Or (x, y) -> _And (_Not x) (_Not y)
| Cond {cnd; pos; neg} -> _Cond cnd (_Not pos) (_Not neg) | Cond {cnd; pos; neg} -> _Cond cnd (_Not pos) (_Not neg)
| Tt | Eq _ | Eq0 _ | Gt0 _ | Lit _ | Iff _ -> Not p ) | Tt | Eq _ | Eq0 _ | Pos _ | Lit _ | Iff _ -> Not p )
|> check invariant |> check invariant
and _Cond cnd pos neg = and _Cond cnd pos neg =
@ -501,8 +501,8 @@ let ppx_f strength fs fml =
| Not (Eq (x, y)) -> pf "(%a@ @<2>≠ %a)" pp_t x pp_t y | Not (Eq (x, y)) -> pf "(%a@ @<2>≠ %a)" pp_t x pp_t y
| Eq0 x -> pf "(0 = %a)" pp_t x | Eq0 x -> pf "(0 = %a)" pp_t x
| Not (Eq0 x) -> pf "(0 @<2>≠ %a)" pp_t x | Not (Eq0 x) -> pf "(0 @<2>≠ %a)" pp_t x
| Gt0 x -> pf "(0 < %a)" pp_t x | Pos x -> pf "(0 < %a)" pp_t x
| Not (Gt0 x) -> pf "(0 @<2>≥ %a)" pp_t x | Not (Pos x) -> pf "(0 @<2>≥ %a)" pp_t x
| Not x -> pf "@<1>¬%a" pp x | Not x -> pf "@<1>¬%a" pp x
| And (x, y) -> pf "(%a@ @<2>∧ %a)" pp x pp y | And (x, y) -> pf "(%a@ @<2>∧ %a)" pp x pp y
| Or (x, y) -> pf "(%a@ @<2> %a)" pp x pp y | Or (x, y) -> pf "(%a@ @<2> %a)" pp x pp y
@ -555,7 +555,7 @@ let rec fold_vars_f ~init p ~f =
match (p : fml) with match (p : fml) with
| Tt -> init | Tt -> init
| Eq (x, y) -> fold_vars_t ~f x ~init:(fold_vars_t ~f y ~init) | Eq (x, y) -> fold_vars_t ~f x ~init:(fold_vars_t ~f y ~init)
| Eq0 x | Gt0 x -> fold_vars_t ~f x ~init | Eq0 x | Pos x -> fold_vars_t ~f x ~init
| Not x -> fold_vars_f ~f x ~init | Not x -> fold_vars_f ~f x ~init
| And (x, y) | Or (x, y) | Iff (x, y) -> | And (x, y) | Or (x, y) | Iff (x, y) ->
fold_vars_f ~f x ~init:(fold_vars_f ~f y ~init) fold_vars_f ~f x ~init:(fold_vars_f ~f y ~init)
@ -603,7 +603,7 @@ let rec map_trms_f ~f b =
| Tt -> b | Tt -> b
| Eq (x, y) -> map2 f b _Eq x y | Eq (x, y) -> map2 f b _Eq x y
| Eq0 x -> map1 f b _Eq0 x | Eq0 x -> map1 f b _Eq0 x
| Gt0 x -> map1 f b _Gt0 x | Pos x -> map1 f b _Pos x
| Not x -> map1 (map_trms_f ~f) b _Not x | Not x -> map1 (map_trms_f ~f) b _Not x
| And (x, y) -> map2 (map_trms_f ~f) b _And x y | And (x, y) -> map2 (map_trms_f ~f) b _And x y
| Or (x, y) -> map2 (map_trms_f ~f) b _Or x y | Or (x, y) -> map2 (map_trms_f ~f) b _Or x y
@ -910,20 +910,14 @@ module Formula = struct
let dq a b = _Not (eq a b) let dq a b = _Not (eq a b)
let eq0 = ap1f _Eq0 let eq0 = ap1f _Eq0
let dq0 a = _Not (eq0 a) let dq0 a = _Not (eq0 a)
let gt0 = ap1f _Gt0 let pos = ap1f _Pos
let le0 a = _Not (gt0 a)
let ge0 a = le0 (Term.neg a)
let lt0 a = gt0 (Term.neg a)
let gt a b = (* a > b iff a-b > 0 iff 0 < a-b *)
if a == Term.zero then lt0 b let gt a b = if b == Term.zero then pos a else pos (Term.sub a b)
else if b == Term.zero then gt0 a
else gt0 (Term.sub a b)
(* a ≥ b iff 0 ≥ b-a iff ¬(0 < b-a) *)
let ge a b = let ge a b =
if a == Term.zero then le0 b if a == Term.zero then _Not (pos b) else _Not (pos (Term.sub b a))
else if b == Term.zero then ge0 a
else ge0 (Term.sub a b)
let lt a b = gt b a let lt a b = gt b a
let le a b = ge b a let le a b = ge b a
@ -972,7 +966,7 @@ module Formula = struct
| Tt -> b | Tt -> b
| Eq (x, y) -> lift_map2 f b _Eq x y | Eq (x, y) -> lift_map2 f b _Eq x y
| Eq0 x -> lift_map1 f b _Eq0 x | Eq0 x -> lift_map1 f b _Eq0 x
| Gt0 x -> lift_map1 f b _Gt0 x | Pos x -> lift_map1 f b _Pos x
| Not x -> map1 (map_terms ~f) b _Not x | Not x -> map1 (map_terms ~f) b _Not x
| And (x, y) -> map2 (map_terms ~f) b _And x y | And (x, y) -> map2 (map_terms ~f) b _And x y
| Or (x, y) -> map2 (map_terms ~f) b _Or x y | Or (x, y) -> map2 (map_terms ~f) b _Or x y
@ -1002,7 +996,7 @@ module Formula = struct
fun ~meet1 ~join1 ~top ~bot fml -> fun ~meet1 ~join1 ~top ~bot fml ->
let rec add_conjunct (cjn, splits) fml = let rec add_conjunct (cjn, splits) fml =
match fml with match fml with
| Tt | Eq _ | Eq0 _ | Gt0 _ | Iff _ | Lit _ | Not _ -> | Tt | Eq _ | Eq0 _ | Pos _ | Iff _ | Lit _ | Not _ ->
(meet1 fml cjn, splits) (meet1 fml cjn, splits)
| And (p, q) -> add_conjunct (add_conjunct (cjn, splits) p) q | And (p, q) -> add_conjunct (add_conjunct (cjn, splits) p) q
| Or (p, q) -> (cjn, [p; q] :: splits) | Or (p, q) -> (cjn, [p; q] :: splits)
@ -1077,7 +1071,7 @@ let rec f_to_ses : fml -> Ses.Term.t = function
| Not Tt -> Ses.Term.false_ | Not Tt -> Ses.Term.false_
| Eq (x, y) -> Ses.Term.eq (t_to_ses x) (t_to_ses y) | Eq (x, y) -> Ses.Term.eq (t_to_ses x) (t_to_ses y)
| Eq0 x -> Ses.Term.eq Ses.Term.zero (t_to_ses x) | Eq0 x -> Ses.Term.eq Ses.Term.zero (t_to_ses x)
| Gt0 x -> Ses.Term.lt Ses.Term.zero (t_to_ses x) | Pos x -> Ses.Term.lt Ses.Term.zero (t_to_ses x)
| Not p -> Ses.Term.not_ (f_to_ses p) | Not p -> Ses.Term.not_ (f_to_ses p)
| And (p, q) -> Ses.Term.and_ (f_to_ses p) (f_to_ses q) | And (p, q) -> Ses.Term.and_ (f_to_ses p) (f_to_ses q)
| Or (p, q) -> Ses.Term.or_ (f_to_ses p) (f_to_ses q) | Or (p, q) -> Ses.Term.or_ (f_to_ses p) (f_to_ses q)

@ -106,10 +106,7 @@ and Formula : sig
(* arithmetic *) (* arithmetic *)
val eq0 : Term.t -> t val eq0 : Term.t -> t
val dq0 : Term.t -> t val dq0 : Term.t -> t
val gt0 : Term.t -> t val pos : Term.t -> t
val ge0 : Term.t -> t
val lt0 : Term.t -> t
val le0 : Term.t -> t
val gt : Term.t -> Term.t -> t val gt : Term.t -> Term.t -> t
val ge : Term.t -> Term.t -> t val ge : Term.t -> Term.t -> t
val lt : Term.t -> Term.t -> t val lt : Term.t -> Term.t -> t

Loading…
Cancel
Save