[sledge] Remove redundant Ge0 and Lt0 predicates

Reviewed By: jvillard

Differential Revision: D24306083

fbshipit-source-id: 7c2383a79
master
Josh Berdine 4 years ago committed by Facebook GitHub Bot
parent 5b4be9cab8
commit 7b82ab17bf

@ -265,8 +265,6 @@ module Fml : sig
| Eq0 of trm (** [Eq0(x)] iff x = 0 *)
| Dq0 of trm (** [Dq0(x)] iff x ≠ 0 *)
| Gt0 of trm (** [Gt0(x)] iff x > 0 *)
| Ge0 of trm (** [Ge0(x)] iff x ≥ 0 *)
| Lt0 of trm (** [Lt0(x)] iff x < 0 *)
| Le0 of trm (** [Le0(x)] iff x ≤ 0 *)
(* propositional connectives *)
| And of fml * fml
@ -286,8 +284,6 @@ module Fml : sig
val _Eq0 : trm -> fml
val _Dq0 : trm -> fml
val _Gt0 : trm -> fml
val _Ge0 : trm -> fml
val _Lt0 : trm -> fml
val _Le0 : trm -> fml
val _Not : fml -> fml
val _And : fml -> fml -> fml
@ -306,8 +302,6 @@ end = struct
| Eq0 of trm
| Dq0 of trm
| Gt0 of trm
| Ge0 of trm
| Lt0 of trm
| Le0 of trm
| And of fml * fml
| Or of fml * fml
@ -383,16 +377,6 @@ end = struct
| Q q -> if Q.gt q Q.zero then Tt else Ff
| x -> Gt0 x
let _Ge0 = function
| Z z -> if Z.geq z Z.zero then Tt else Ff
| Q q -> if Q.geq q Q.zero then Tt else Ff
| x -> Ge0 x
let _Lt0 = function
| Z z -> if Z.lt z Z.zero then Tt else Ff
| Q q -> if Q.lt q Q.zero then Tt else Ff
| x -> Lt0 x
let _Le0 = function
| Z z -> if Z.leq z Z.zero then Tt else Ff
| Q q -> if Q.leq q Q.zero then Tt else Ff
@ -402,9 +386,8 @@ end = struct
let _UNegLit p xs = UNegLit (p, xs)
let is_negative = function
| Ff | Dq _ | Dq0 _ | Lt0 _ | Le0 _ | Or _ | Xor _ | UNegLit _ -> true
| Tt | Eq _ | Eq0 _ | Gt0 _ | Ge0 _ | And _ | Iff _ | UPosLit _ | Cond _
->
| Ff | Dq _ | Dq0 _ | Le0 _ | Or _ | Xor _ | UNegLit _ -> true
| Tt | Eq _ | Eq0 _ | Gt0 _ | And _ | Iff _ | UPosLit _ | Cond _ ->
false
type equal_or_opposite = Equal | Opposite | Unknown
@ -414,12 +397,7 @@ end = struct
| Tt, Ff | Ff, Tt -> Opposite
| Eq (a, b), Dq (a', b') | Dq (a, b), Eq (a', b') ->
if equal_trm a a' && equal_trm b b' then Opposite else Unknown
| Eq0 a, Dq0 a'
|Dq0 a, Eq0 a'
|Gt0 a, Le0 a'
|Ge0 a, Lt0 a'
|Lt0 a, Ge0 a'
|Le0 a, Gt0 a' ->
| Eq0 a, Dq0 a' | Dq0 a, Eq0 a' | Gt0 a, Le0 a' | Le0 a, Gt0 a' ->
if equal_trm a a' then Opposite else Unknown
| And (a, b), Or (a', b') | Or (a', b'), And (a, b) -> (
match equal_or_opposite a a' with
@ -502,8 +480,6 @@ end = struct
| Eq0 x -> _Dq0 x
| Dq0 x -> _Eq0 x
| Gt0 x -> _Le0 x
| Ge0 x -> _Lt0 x
| Lt0 x -> _Ge0 x
| Le0 x -> _Gt0 x
| And (x, y) -> _Or (_Not x) (_Not y)
| Or (x, y) -> _And (_Not x) (_Not y)
@ -582,8 +558,6 @@ let ppx_f strength fs fml =
| Eq0 x -> pf "(0 = %a)" pp_t x
| Dq0 x -> pf "(0 @<2>≠ %a)" pp_t x
| Gt0 x -> pf "(0 < %a)" pp_t x
| Ge0 x -> pf "(0 @<2>≤ %a)" pp_t x
| Lt0 x -> pf "(0 > %a)" pp_t x
| Le0 x -> pf "(0 @<2>≥ %a)" pp_t x
| And (x, y) -> pf "(%a@ @<2>∧ %a)" pp x pp y
| Or (x, y) -> pf "(%a@ @<2> %a)" pp x pp y
@ -639,7 +613,7 @@ let rec fold_vars_f ~init p ~f =
match (p : fml) with
| Tt | Ff -> init
| Eq (x, y) | Dq (x, y) -> fold_vars_t ~f x ~init:(fold_vars_t ~f y ~init)
| Eq0 x | Dq0 x | Gt0 x | Ge0 x | Lt0 x | Le0 x -> fold_vars_t ~f x ~init
| Eq0 x | Dq0 x | Gt0 x | Le0 x -> fold_vars_t ~f x ~init
| And (x, y) | Or (x, y) | Iff (x, y) | Xor (x, y) ->
fold_vars_f ~f x ~init:(fold_vars_f ~f y ~init)
| Cond {cnd; pos; neg} ->
@ -690,8 +664,6 @@ let rec map_trms_f ~f b =
| Eq0 x -> map1 f b _Eq0 x
| Dq0 x -> map1 f b _Dq0 x
| Gt0 x -> map1 f b _Gt0 x
| Ge0 x -> map1 f b _Ge0 x
| Lt0 x -> map1 f b _Lt0 x
| Le0 x -> map1 f b _Le0 x
| And (x, y) -> map2 (map_trms_f ~f) b _And x y
| Or (x, y) -> map2 (map_trms_f ~f) b _Or x y
@ -1001,9 +973,9 @@ module Formula = struct
let eq0 = ap1f _Eq0
let dq0 = ap1f _Dq0
let gt0 = ap1f _Gt0
let ge0 = ap1f _Ge0
let lt0 = ap1f _Lt0
let le0 = ap1f _Le0
let ge0 a = le0 (Term.neg a)
let lt0 a = gt0 (Term.neg a)
let gt a b =
if a == Term.zero then lt0 b
@ -1066,8 +1038,6 @@ module Formula = struct
| Eq0 x -> lift_map1 f b _Eq0 x
| Dq0 x -> lift_map1 f b _Dq0 x
| Gt0 x -> lift_map1 f b _Gt0 x
| Ge0 x -> lift_map1 f b _Ge0 x
| Lt0 x -> lift_map1 f b _Lt0 x
| Le0 x -> lift_map1 f b _Le0 x
| And (x, y) -> map2 (map_terms ~f) b _And x y
| Or (x, y) -> map2 (map_terms ~f) b _Or x y
@ -1099,8 +1069,8 @@ module Formula = struct
fun ~meet1 ~join1 ~top ~bot fml ->
let rec add_conjunct (cjn, splits) fml =
match fml with
| Tt | Ff | Eq _ | Dq _ | Eq0 _ | Dq0 _ | Gt0 _ | Ge0 _ | Lt0 _
|Le0 _ | Iff _ | Xor _ | UPosLit _ | UNegLit _ ->
| Tt | Ff | Eq _ | Dq _ | Eq0 _ | Dq0 _ | Gt0 _ | Le0 _ | Iff _
|Xor _ | UPosLit _ | UNegLit _ ->
(meet1 fml cjn, splits)
| And (p, q) -> add_conjunct (add_conjunct (cjn, splits) p) q
| Or (p, q) -> (cjn, [p; q] :: splits)
@ -1178,8 +1148,6 @@ let rec f_to_ses : fml -> Ses.Term.t = function
| Eq0 x -> Ses.Term.eq Ses.Term.zero (t_to_ses x)
| Dq0 x -> Ses.Term.dq Ses.Term.zero (t_to_ses x)
| Gt0 x -> Ses.Term.lt Ses.Term.zero (t_to_ses x)
| Ge0 x -> Ses.Term.le Ses.Term.zero (t_to_ses x)
| Lt0 x -> Ses.Term.lt (t_to_ses x) Ses.Term.zero
| Le0 x -> Ses.Term.le (t_to_ses x) Ses.Term.zero
| And (p, q) -> Ses.Term.and_ (f_to_ses p) (f_to_ses q)
| Or (p, q) -> Ses.Term.or_ (f_to_ses p) (f_to_ses q)

@ -271,7 +271,7 @@ let%test_module _ =
[%expect
{|
( infer_frame:
(0 (-1 × (%n_9) + 2))
(0 (1 × (%n_9) + -2))
%l_6
-[ %l_6, 16 )-> (8 × (%n_9)),%a_2^(-8 × (%n_9) + 16),%a_3
\- %a_1, %m_8 .

Loading…
Cancel
Save