|
|
@ -158,7 +158,7 @@ let%test_module _ =
|
|
|
|
\- ∃ %a_3, %m_8 .
|
|
|
|
\- ∃ %a_3, %m_8 .
|
|
|
|
%l_6 -[ %l_6, %m_8 )-> ⟨16,%a_3⟩
|
|
|
|
%l_6 -[ %l_6, %m_8 )-> ⟨16,%a_3⟩
|
|
|
|
) infer_frame:
|
|
|
|
) infer_frame:
|
|
|
|
%a_2 = _ ∧ (⟨8,%a_1⟩^⟨8,%a_2⟩) = %a_3 ∧ 16 = %m_8 ∧ emp |}]
|
|
|
|
%a_2 = _ ∧ 16 = %m_8 ∧ (⟨8,%a_1⟩^⟨8,%a_2⟩) = %a_3 ∧ emp |}]
|
|
|
|
|
|
|
|
|
|
|
|
let%expect_test _ =
|
|
|
|
let%expect_test _ =
|
|
|
|
check_frame
|
|
|
|
check_frame
|
|
|
@ -174,7 +174,7 @@ let%test_module _ =
|
|
|
|
\- ∃ %a_3, %m_8 .
|
|
|
|
\- ∃ %a_3, %m_8 .
|
|
|
|
%l_6 -[ %l_6, %m_8 )-> ⟨%m_8,%a_3⟩
|
|
|
|
%l_6 -[ %l_6, %m_8 )-> ⟨%m_8,%a_3⟩
|
|
|
|
) infer_frame:
|
|
|
|
) infer_frame:
|
|
|
|
%a_2 = _ ∧ (⟨8,%a_1⟩^⟨8,%a_2⟩) = %a_3 ∧ 16 = %m_8 ∧ emp |}]
|
|
|
|
%a_2 = _ ∧ 16 = %m_8 ∧ (⟨8,%a_1⟩^⟨8,%a_2⟩) = %a_3 ∧ emp |}]
|
|
|
|
|
|
|
|
|
|
|
|
let%expect_test _ =
|
|
|
|
let%expect_test _ =
|
|
|
|
check_frame
|
|
|
|
check_frame
|
|
|
@ -194,8 +194,8 @@ let%test_module _ =
|
|
|
|
) infer_frame:
|
|
|
|
) infer_frame:
|
|
|
|
∃ %a0_10, %a1_11 .
|
|
|
|
∃ %a0_10, %a1_11 .
|
|
|
|
%a_2 = %a0_10
|
|
|
|
%a_2 = %a0_10
|
|
|
|
∧ (⟨16,%a_2⟩^⟨16,%a1_11⟩) = %a_1
|
|
|
|
|
|
|
|
∧ 16 = %m_8 = %n_9
|
|
|
|
∧ 16 = %m_8 = %n_9
|
|
|
|
|
|
|
|
∧ (⟨16,%a_2⟩^⟨16,%a1_11⟩) = %a_1
|
|
|
|
∧ ((16 × 1) + (1 × %k_5)) -[ %k_5, 16 )-> ⟨16,%a1_11⟩ |}]
|
|
|
|
∧ ((16 × 1) + (1 × %k_5)) -[ %k_5, 16 )-> ⟨16,%a1_11⟩ |}]
|
|
|
|
|
|
|
|
|
|
|
|
let%expect_test _ =
|
|
|
|
let%expect_test _ =
|
|
|
@ -216,8 +216,8 @@ let%test_module _ =
|
|
|
|
) infer_frame:
|
|
|
|
) infer_frame:
|
|
|
|
∃ %a0_10, %a1_11 .
|
|
|
|
∃ %a0_10, %a1_11 .
|
|
|
|
%a_2 = %a0_10
|
|
|
|
%a_2 = %a0_10
|
|
|
|
∧ (⟨16,%a_2⟩^⟨16,%a1_11⟩) = %a_1
|
|
|
|
|
|
|
|
∧ 16 = %m_8 = %n_9
|
|
|
|
∧ 16 = %m_8 = %n_9
|
|
|
|
|
|
|
|
∧ (⟨16,%a_2⟩^⟨16,%a1_11⟩) = %a_1
|
|
|
|
∧ ((16 × 1) + (1 × %k_5)) -[ %k_5, 16 )-> ⟨16,%a1_11⟩ |}]
|
|
|
|
∧ ((16 × 1) + (1 × %k_5)) -[ %k_5, 16 )-> ⟨16,%a1_11⟩ |}]
|
|
|
|
|
|
|
|
|
|
|
|
let seg_split_symbolically =
|
|
|
|
let seg_split_symbolically =
|
|
|
@ -249,14 +249,14 @@ let%test_module _ =
|
|
|
|
∧ 16 = %m_8
|
|
|
|
∧ 16 = %m_8
|
|
|
|
∧ ((16 × 1) + (1 × %l_6)) -[ %l_6, 16 )-> ⟨0,%a_3⟩)
|
|
|
|
∧ ((16 × 1) + (1 × %l_6)) -[ %l_6, 16 )-> ⟨0,%a_3⟩)
|
|
|
|
∨ ( %a_3 = _
|
|
|
|
∨ ( %a_3 = _
|
|
|
|
∧ (⟨8,%a_2⟩^⟨8,%a_3⟩) = %a_1
|
|
|
|
|
|
|
|
∧ 1 = %n_9
|
|
|
|
∧ 1 = %n_9
|
|
|
|
∧ 16 = %m_8
|
|
|
|
∧ 16 = %m_8
|
|
|
|
|
|
|
|
∧ (⟨8,%a_2⟩^⟨8,%a_3⟩) = %a_1
|
|
|
|
∧ emp)
|
|
|
|
∧ emp)
|
|
|
|
∨ ( %a_3 = _
|
|
|
|
∨ ( %a_3 = _
|
|
|
|
∧ (⟨0,%a_2⟩^⟨16,%a_3⟩) = %a_1
|
|
|
|
|
|
|
|
∧ 0 = %n_9
|
|
|
|
∧ 0 = %n_9
|
|
|
|
∧ 16 = %m_8
|
|
|
|
∧ 16 = %m_8
|
|
|
|
|
|
|
|
∧ (⟨0,%a_2⟩^⟨16,%a_3⟩) = %a_1
|
|
|
|
∧ emp)
|
|
|
|
∧ emp)
|
|
|
|
) |}]
|
|
|
|
) |}]
|
|
|
|
|
|
|
|
|
|
|
|