|
|
@ -56,18 +56,6 @@ let map_seg ~f h =
|
|
|
|
then h
|
|
|
|
then h
|
|
|
|
else {loc; bas; len; siz; seq}
|
|
|
|
else {loc; bas; len; siz; seq}
|
|
|
|
|
|
|
|
|
|
|
|
let map ~f_sjn ~f_ctx ~f_trm ~f_fml ({us; xs= _; ctx; pure; heap; djns} as q)
|
|
|
|
|
|
|
|
=
|
|
|
|
|
|
|
|
let pure = f_fml pure in
|
|
|
|
|
|
|
|
if Formula.(equal ff pure) then false_ us
|
|
|
|
|
|
|
|
else
|
|
|
|
|
|
|
|
let ctx = f_ctx ctx in
|
|
|
|
|
|
|
|
let heap = List.map_endo heap ~f:(map_seg ~f:f_trm) in
|
|
|
|
|
|
|
|
let djns = List.map_endo djns ~f:(List.map_endo ~f:f_sjn) in
|
|
|
|
|
|
|
|
if ctx == q.ctx && pure == q.pure && heap == q.heap && djns == q.djns
|
|
|
|
|
|
|
|
then q
|
|
|
|
|
|
|
|
else {q with ctx; pure; heap; djns}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
let fold_terms_seg {loc; bas; len; siz; seq} s ~f =
|
|
|
|
let fold_terms_seg {loc; bas; len; siz; seq} s ~f =
|
|
|
|
f loc (f bas (f len (f siz (f seq s))))
|
|
|
|
f loc (f bas (f len (f siz (f seq s))))
|
|
|
|
|
|
|
|
|
|
|
@ -301,11 +289,60 @@ let rec invariant q =
|
|
|
|
|
|
|
|
|
|
|
|
(** Quantification and Vocabulary *)
|
|
|
|
(** Quantification and Vocabulary *)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
let exists_fresh xs q =
|
|
|
|
|
|
|
|
[%Trace.call fun {pf} ->
|
|
|
|
|
|
|
|
pf "{@[%a@]}@ %a" Var.Set.pp xs pp q ;
|
|
|
|
|
|
|
|
assert (
|
|
|
|
|
|
|
|
Var.Set.disjoint xs q.us
|
|
|
|
|
|
|
|
|| fail "Sh.exists_fresh xs ∩ q.us: %a" Var.Set.pp
|
|
|
|
|
|
|
|
(Var.Set.inter xs q.us) () )]
|
|
|
|
|
|
|
|
;
|
|
|
|
|
|
|
|
( if Var.Set.is_empty xs then q
|
|
|
|
|
|
|
|
else {q with xs= Var.Set.union q.xs xs} |> check invariant )
|
|
|
|
|
|
|
|
|>
|
|
|
|
|
|
|
|
[%Trace.retn fun {pf} -> pf "%a" pp]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
let exists xs q =
|
|
|
|
|
|
|
|
[%Trace.call fun {pf} -> pf "{@[%a@]}@ %a" Var.Set.pp xs pp q]
|
|
|
|
|
|
|
|
;
|
|
|
|
|
|
|
|
assert (
|
|
|
|
|
|
|
|
Var.Set.subset xs ~of_:q.us
|
|
|
|
|
|
|
|
|| fail "Sh.exists xs - q.us: %a" Var.Set.pp (Var.Set.diff xs q.us) ()
|
|
|
|
|
|
|
|
) ;
|
|
|
|
|
|
|
|
( if Var.Set.is_empty xs then q
|
|
|
|
|
|
|
|
else
|
|
|
|
|
|
|
|
{q with us= Var.Set.diff q.us xs; xs= Var.Set.union q.xs xs}
|
|
|
|
|
|
|
|
|> check invariant )
|
|
|
|
|
|
|
|
|>
|
|
|
|
|
|
|
|
[%Trace.retn fun {pf} -> pf "%a" pp]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
(** remove quantification on variables disjoint from vocabulary *)
|
|
|
|
|
|
|
|
let elim_exists xs q =
|
|
|
|
|
|
|
|
assert (Var.Set.disjoint xs q.us) ;
|
|
|
|
|
|
|
|
{q with us= Var.Set.union q.us xs; xs= Var.Set.diff q.xs xs}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
let map ~f_sjn ~f_ctx ~f_trm ~f_fml ({us; xs= _; ctx; pure; heap; djns} as q)
|
|
|
|
|
|
|
|
=
|
|
|
|
|
|
|
|
let pure = f_fml pure in
|
|
|
|
|
|
|
|
if Formula.(equal ff pure) then false_ us
|
|
|
|
|
|
|
|
else
|
|
|
|
|
|
|
|
let xs, ctx = f_ctx ctx in
|
|
|
|
|
|
|
|
let heap = List.map_endo heap ~f:(map_seg ~f:f_trm) in
|
|
|
|
|
|
|
|
let djns = List.map_endo djns ~f:(List.map_endo ~f:f_sjn) in
|
|
|
|
|
|
|
|
if
|
|
|
|
|
|
|
|
ctx == q.ctx
|
|
|
|
|
|
|
|
&& pure == q.pure
|
|
|
|
|
|
|
|
&& heap == q.heap
|
|
|
|
|
|
|
|
&& djns == q.djns
|
|
|
|
|
|
|
|
&& Var.Set.is_empty xs
|
|
|
|
|
|
|
|
then q
|
|
|
|
|
|
|
|
else exists_fresh xs {q with ctx; pure; heap; djns}
|
|
|
|
|
|
|
|
|
|
|
|
(** primitive application of a substitution, ignores us and xs, may violate
|
|
|
|
(** primitive application of a substitution, ignores us and xs, may violate
|
|
|
|
invariant *)
|
|
|
|
invariant *)
|
|
|
|
let rec apply_subst sub q =
|
|
|
|
let rec apply_subst sub q =
|
|
|
|
map q ~f_sjn:(rename sub)
|
|
|
|
map q ~f_sjn:(rename sub)
|
|
|
|
~f_ctx:(fun r -> Context.rename r sub)
|
|
|
|
~f_ctx:(fun r -> (Var.Set.empty, Context.rename r sub))
|
|
|
|
~f_trm:(Term.rename sub) ~f_fml:(Formula.rename sub)
|
|
|
|
~f_trm:(Term.rename sub) ~f_fml:(Formula.rename sub)
|
|
|
|
|> check (fun q' ->
|
|
|
|
|> check (fun q' ->
|
|
|
|
assert (Var.Set.disjoint (fv q') (Var.Subst.domain sub)) )
|
|
|
|
assert (Var.Set.disjoint (fv q') (Var.Subst.domain sub)) )
|
|
|
@ -386,38 +423,6 @@ let bind_exists q ~wrt =
|
|
|
|
|>
|
|
|
|
|>
|
|
|
|
[%Trace.retn fun {pf} (_, q') -> pf "%a" pp q']
|
|
|
|
[%Trace.retn fun {pf} (_, q') -> pf "%a" pp q']
|
|
|
|
|
|
|
|
|
|
|
|
let exists_fresh xs q =
|
|
|
|
|
|
|
|
[%Trace.call fun {pf} ->
|
|
|
|
|
|
|
|
pf "{@[%a@]}@ %a" Var.Set.pp xs pp q ;
|
|
|
|
|
|
|
|
assert (
|
|
|
|
|
|
|
|
Var.Set.disjoint xs q.us
|
|
|
|
|
|
|
|
|| fail "Sh.exists_fresh xs ∩ q.us: %a" Var.Set.pp
|
|
|
|
|
|
|
|
(Var.Set.inter xs q.us) () )]
|
|
|
|
|
|
|
|
;
|
|
|
|
|
|
|
|
( if Var.Set.is_empty xs then q
|
|
|
|
|
|
|
|
else {q with xs= Var.Set.union q.xs xs} |> check invariant )
|
|
|
|
|
|
|
|
|>
|
|
|
|
|
|
|
|
[%Trace.retn fun {pf} -> pf "%a" pp]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
let exists xs q =
|
|
|
|
|
|
|
|
[%Trace.call fun {pf} -> pf "{@[%a@]}@ %a" Var.Set.pp xs pp q]
|
|
|
|
|
|
|
|
;
|
|
|
|
|
|
|
|
assert (
|
|
|
|
|
|
|
|
Var.Set.subset xs ~of_:q.us
|
|
|
|
|
|
|
|
|| fail "Sh.exists xs - q.us: %a" Var.Set.pp (Var.Set.diff xs q.us) ()
|
|
|
|
|
|
|
|
) ;
|
|
|
|
|
|
|
|
( if Var.Set.is_empty xs then q
|
|
|
|
|
|
|
|
else
|
|
|
|
|
|
|
|
{q with us= Var.Set.diff q.us xs; xs= Var.Set.union q.xs xs}
|
|
|
|
|
|
|
|
|> check invariant )
|
|
|
|
|
|
|
|
|>
|
|
|
|
|
|
|
|
[%Trace.retn fun {pf} -> pf "%a" pp]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
(** remove quantification on variables disjoint from vocabulary *)
|
|
|
|
|
|
|
|
let elim_exists xs q =
|
|
|
|
|
|
|
|
assert (Var.Set.disjoint xs q.us) ;
|
|
|
|
|
|
|
|
{q with us= Var.Set.union q.us xs; xs= Var.Set.diff q.xs xs}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
(** Construct *)
|
|
|
|
(** Construct *)
|
|
|
|
|
|
|
|
|
|
|
|
(** conjoin an FOL context assuming vocabulary is compatible *)
|
|
|
|
(** conjoin an FOL context assuming vocabulary is compatible *)
|
|
|
@ -623,12 +628,10 @@ let dnf q =
|
|
|
|
let rec norm_ s q =
|
|
|
|
let rec norm_ s q =
|
|
|
|
[%Trace.call fun {pf} -> pf "@[%a@]@ %a" Context.Subst.pp s pp_raw q]
|
|
|
|
[%Trace.call fun {pf} -> pf "@[%a@]@ %a" Context.Subst.pp s pp_raw q]
|
|
|
|
;
|
|
|
|
;
|
|
|
|
let q =
|
|
|
|
map q ~f_sjn:(norm_ s)
|
|
|
|
map q ~f_sjn:(norm_ s) ~f_ctx:Fun.id ~f_trm:(Context.Subst.subst s)
|
|
|
|
~f_ctx:(Context.apply_subst (Var.Set.union q.us q.xs) s)
|
|
|
|
|
|
|
|
~f_trm:(Context.Subst.subst s)
|
|
|
|
~f_fml:(Formula.map_terms ~f:(Context.Subst.subst s))
|
|
|
|
~f_fml:(Formula.map_terms ~f:(Context.Subst.subst s))
|
|
|
|
in
|
|
|
|
|
|
|
|
let xs, ctx = Context.apply_subst (Var.Set.union q.us q.xs) s q.ctx in
|
|
|
|
|
|
|
|
exists_fresh xs {q with ctx}
|
|
|
|
|
|
|
|
|>
|
|
|
|
|>
|
|
|
|
[%Trace.retn fun {pf} q' ->
|
|
|
|
[%Trace.retn fun {pf} q' ->
|
|
|
|
pf "%a" pp_raw q' ;
|
|
|
|
pf "%a" pp_raw q' ;
|
|
|
|