[sledge sem] Organise the tranlation corectness proof

Summary:
Separate into separate files the theorems that are just about the
translation (mostly about the structure of the variable->expression
mapping that the translation builds) from theorems about the translation
and the semantics.

Also move the stuff about dominator_ordered into the SSA Theory, since
it only makes sense for SSA programs, but doesn't have anything to do
with the translation.

Reviewed By: jberdine

Differential Revision: D20673124

fbshipit-source-id: 9d8b08164
master
Scott Owens 5 years ago committed by Facebook GitHub Bot
parent 2a6ababa99
commit 9327f41880

@ -9,14 +9,14 @@
* simplifies it *)
open HolKernel boolLib bossLib Parse;
open pred_setTheory listTheory rich_listTheory;
open pred_setTheory listTheory rich_listTheory pairTheory arithmeticTheory;
open settingsTheory miscTheory llvmTheory llvm_propTheory;
new_theory "llvm_ssa";
numLib.prefer_num ();
(* ----- Static paths through a program *)
(* ----- Static paths through a program ----- *)
Definition inc_pc_def:
inc_pc ip = ip with i := inc_bip ip.i
@ -538,4 +538,300 @@ Proof
metis_tac []
QED
(* ----- A theory of *dominator ordered* programs ------ *)
(* A list of basic blocks is dominator ordered if each variable use occurs after
* the assignment to that variable. We can also define a notion of variable
* liveness that follows the list structure, rather than the CFG structure, and
* show that for dominator ordered lists, the live set is empty at the entry
* point *)
Definition instrs_live_def:
(instrs_live [] = ({}, {}))
(instrs_live (i::is) =
let (gen, kill) = instrs_live is in
(instr_uses i (gen DIFF image fst (instr_assigns i)),
(image fst (instr_assigns i) (kill DIFF instr_uses i))))
End
Definition header_uses_def:
(header_uses (Head phis land) =
bigunion { phi_uses from_l p | from_l,p | mem p phis })
(header_uses Entry = {})
End
Definition header_assigns_def:
(header_assigns (Head phis land) = set (map (fst o phi_assigns) phis))
(header_assigns Entry = {})
End
Definition linear_live_def:
(linear_live [] = {})
(linear_live (b::bs) =
let (gen,kill) = instrs_live b.body in
header_uses b.h (gen (linear_live bs DIFF kill) DIFF header_assigns b.h))
End
Definition bip_less_def:
(bip_less (Phi_ip _) (Offset _) T)
(bip_less (Offset m) (Offset n) m < n)
(bip_less _ _ F)
End
Definition linear_pc_less_def:
linear_pc_less = $< LEX bip_less
End
Inductive lpc_get_instr:
(∀i idx bs.
i < length bs
idx < length (el i bs).body
lpc_get_instr bs (i, Offset idx) (Inl (el idx (el i bs).body)))
(∀i from_l phis bs landing.
i < length bs
(el i bs).h = Head phis landing
lpc_get_instr bs (i, Phi_ip from_l) (Inr (from_l, phis)))
End
Inductive lpc_assigns:
(∀bs ip i r.
lpc_get_instr bs ip (Inl i)
r instr_assigns i
lpc_assigns bs ip r)
(∀bs ip from_l phis r.
lpc_get_instr bs ip (Inr (from_l, phis))
r set (map phi_assigns phis)
lpc_assigns bs ip r)
End
Inductive lpc_uses:
(∀bs ip i r.
lpc_get_instr bs ip (Inl i)
r instr_uses i
lpc_uses bs ip r)
(∀bs ip from_l phis r.
lpc_get_instr bs ip (Inr (from_l, phis))
r BIGUNION (set (map (phi_uses from_l) phis))
lpc_uses bs ip r)
End
Definition dominator_ordered_def:
dominator_ordered p
∀f d lip1 r.
alookup p (Fn f) = Some d
r lpc_uses (map snd d.blocks) lip1
∃lip2. linear_pc_less lip2 lip1 r image fst (lpc_assigns (map snd d.blocks) lip2)
End
Theorem instrs_kill_subset_assigns:
snd (instrs_live is) bigunion (image (λi. image fst (instr_assigns i)) (set is))
Proof
Induct_on `is` >> rw [instrs_live_def] >>
pairarg_tac >> rw [] >>
fs [SUBSET_DEF]
QED
Theorem instrs_gen_subset_uses:
fst (instrs_live is) bigunion (image instr_uses (set is))
Proof
Induct_on `is` >> rw [instrs_live_def] >>
pairarg_tac >> rw [] >>
fs [SUBSET_DEF]
QED
Theorem instrs_subset_assigns_subset_kill_gen:
bigunion (image (λi. image fst (instr_assigns i)) (set is))
snd (instrs_live is) fst (instrs_live is)
Proof
Induct_on `is` >> rw [instrs_live_def] >>
pairarg_tac >> rw [] >> fs [SUBSET_DEF] >> rw [] >>
metis_tac []
QED
Theorem use_assign_in_gen_kill:
∀n is r.
n < length is (r image fst (instr_assigns (el n is)) r instr_uses (el n is))
r fst (instrs_live is) r snd (instrs_live is)
Proof
Induct_on `n` >> rw [] >> Cases_on `is` >> rw [] >> fs [] >>
rw [instrs_live_def] >>
pairarg_tac >> rw [] >>
metis_tac [FST, SND, pair_CASES]
QED
Theorem instrs_live_uses:
∀is r.
r fst (instrs_live is)
∃i. i < length is r instr_uses (el i is)
∀j. j < i r instr_uses (el j is) r image fst (instr_assigns (el j is))
Proof
Induct >> rw [instrs_live_def] >> pairarg_tac >> fs []
>- (qexists_tac `0` >> rw []) >>
rename1 `(i1::is)` >>
Cases_on `r instr_uses i1`
>- (qexists_tac `0` >> rw []) >>
first_x_assum drule >> rw [] >>
qexists_tac `Suc i` >> rw [] >>
Cases_on `j` >> fs []
QED
Theorem lpc_get_instr_cons:
∀b bs i bip.
lpc_get_instr (b::bs) (i + 1, bip) = lpc_get_instr bs (i, bip)
Proof
rw [lpc_get_instr_cases, EXTENSION, IN_DEF, EL_CONS] >>
`PRE (i + 1) = i` by decide_tac >>
rw [ADD1]
QED
Theorem lpc_uses_cons:
∀b bs i bip.
lpc_uses (b::bs) (i + 1, bip) = lpc_uses bs (i, bip)
Proof
rw [lpc_uses_cases, EXTENSION, IN_DEF, lpc_get_instr_cons]
QED
Theorem lpc_uses_0_head:
∀b bs. header_uses b.h = bigunion { lpc_uses (b::bs) (0, Phi_ip from_l) | from_l | T}
Proof
rw [EXTENSION, IN_DEF] >>
rw [lpc_uses_cases, lpc_get_instr_cases, PULL_EXISTS] >>
Cases_on `b.h` >> rw [header_uses_def, MEM_MAP, PULL_EXISTS]
>- metis_tac [] >>
eq_tac >> rw []
>- (
qexists_tac `(\x'. ∃y. x' phi_uses from_l y mem y l)` >>
qexists_tac `from_l` >>
rw [] >>
metis_tac []) >>
metis_tac []
QED
Theorem lpc_uses_0_body:
∀b bs. lpc_uses (b::bs) (0, Offset n) fst (instrs_live b.body) snd (instrs_live b.body)
Proof
rw [SUBSET_DEF, IN_DEF] >>
fs [lpc_uses_cases, lpc_get_instr_cases, PULL_EXISTS] >>
metis_tac [use_assign_in_gen_kill, IN_DEF]
QED
Theorem lpc_assigns_cons:
∀b bs i bip.
lpc_assigns (b::bs) (i + 1, bip) = lpc_assigns bs (i, bip)
Proof
rw [lpc_assigns_cases, EXTENSION, IN_DEF, lpc_get_instr_cons]
QED
Theorem lpc_assigns_0_head:
∀b bs from_l.
image fst (lpc_assigns (b::bs) (0, Phi_ip from_l)) = header_assigns b.h
Proof
rw [EXTENSION, Once IN_DEF] >>
rw [lpc_assigns_cases, lpc_get_instr_cases, PULL_EXISTS] >>
Cases_on `b.h` >> rw [header_assigns_def, MEM_MAP] >>
metis_tac []
QED
Theorem lpc_assigns_0_body:
∀b bs. image fst (lpc_assigns (b::bs) (0, Offset n)) fst (instrs_live b.body) snd (instrs_live b.body)
Proof
rw [SUBSET_DEF, IN_DEF] >>
fs [lpc_assigns_cases, lpc_get_instr_cases, PULL_EXISTS] >>
drule use_assign_in_gen_kill >>
rw [] >>
metis_tac [IN_DEF]
QED
Theorem linear_live_uses:
∀bs r. r linear_live bs
∃lip. r lpc_uses bs lip
∀lip2. linear_pc_less lip2 lip r lpc_uses bs lip2 r image fst (lpc_assigns bs lip2)
Proof
Induct >> rw [linear_live_def] >>
rename1 `header_uses b.h` >>
Cases_on `r header_uses b.h`
>- (
fs [header_uses_def] >> pairarg_tac >> fs [] >>
Cases_on `b.h` >> fs [header_uses_def] >>
qexists_tac `(0, Phi_ip from_l)` >> fs [header_uses_def] >>
conj_tac
>- (
simp [IN_DEF] >>
rw [lpc_uses_cases, lpc_get_instr_cases, PULL_EXISTS] >>
rw [MEM_MAP] >> metis_tac [])
>- (
gen_tac >> simp [linear_pc_less_def, LEX_DEF] >>
pairarg_tac >> simp [bip_less_def])) >>
pairarg_tac >> Cases_on `r gen` >> fs []
>- (
`r fst (instrs_live b.body)` by metis_tac [FST] >>
drule instrs_live_uses >> rw [] >>
qexists_tac `(0, Offset i)` >>
conj_tac
>- (
simp [IN_DEF] >>
rw [lpc_uses_cases, lpc_get_instr_cases, PULL_EXISTS] >>
rw [MEM_MAP] >> metis_tac [])
>- (
gen_tac >> strip_tac >>
PairCases_on `lip2` >> fs [linear_pc_less_def, LEX_DEF_THM] >>
Cases_on `lip21` >> fs [bip_less_def]
>- (
Cases_on `b.h` >> fs [header_assigns_def, header_uses_def] >>
simp [IN_DEF] >>
rw [lpc_uses_cases, lpc_assigns_cases, lpc_get_instr_cases, PULL_EXISTS] >>
fs [MEM_MAP] >>
metis_tac [FST])
>- (
first_x_assum drule >>
simp [IN_DEF] >>
rw [lpc_uses_cases, lpc_assigns_cases, lpc_get_instr_cases, PULL_EXISTS] >>
rw [IN_DEF])))
>- (
first_x_assum drule >> rw [] >>
PairCases_on `lip` >>
qexists_tac `lip0+1,lip1` >> simp [IN_DEF] >>
conj_tac
>- fs [lpc_uses_cons, IN_DEF] >>
gen_tac >> disch_tac >>
PairCases_on `lip2` >>
Cases_on `lip20` >> fs [ADD1]
>- (
Cases_on `lip21`
>- (
rename1 `Phi_ip from_l` >>
`r bigunion {lpc_uses (b::bs) (0,Phi_ip from_l) | from_l | T}
r image fst (lpc_assigns (b::bs) (0,Phi_ip from_l))`
by metis_tac [lpc_assigns_0_head, lpc_uses_0_head] >>
fs [IN_DEF] >> metis_tac [])
>- (
`r image fst (lpc_assigns (b::bs) (0,Offset n))
r lpc_uses (b::bs) (0,Offset n)`
by metis_tac [IN_UNION, lpc_assigns_0_body, lpc_uses_0_body, FST, SND, SUBSET_DEF] >>
fs [IN_DEF]))
>- (
`linear_pc_less (n, lip21) (lip0, lip1)` by fs [linear_pc_less_def, LEX_DEF] >>
first_x_assum drule >>
rw [lpc_uses_cons, lpc_assigns_cons] >> fs [IN_DEF]))
QED
Theorem dominator_ordered_linear_live:
∀p f d.
dominator_ordered p
alookup p (Fn f) = Some d
linear_live (map snd d.blocks) = {}
Proof
rw [dominator_ordered_def] >> first_x_assum drule >> rw [EXTENSION] >>
CCONTR_TAC >> fs [] >> drule linear_live_uses >> rw [] >>
metis_tac []
QED
export_theory ();

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff
Loading…
Cancel
Save