[sledge] Lambda-lift Equality.solve_

Summary: Nop refactor

Reviewed By: ngorogiannis

Differential Revision: D19286629

fbshipit-source-id: 1755fb98e
master
Josh Berdine 5 years ago committed by Facebook Github Bot
parent a7b0d68574
commit a75f2701c3

@ -142,58 +142,56 @@ let rec is_constant e =
Qset.for_all ~f:(fun arg _ -> is_constant arg) args
| Label _ | Float _ | Integer _ -> true
let rec solve_ e f s =
let extend ~trm ~rep (us, xs, s) =
Some (us, xs, Subst.compose1 ~key:trm ~data:rep s)
in
let fresh name (us, xs, s) =
let x, us = Var.fresh name ~wrt:us in
let xs = Set.add xs x in
(Term.var x, (us, xs, s))
in
let solve_uninterp e f =
match ((e : Term.t), (f : Term.t)) with
| Integer {data= m}, Integer {data= n} when not (Z.equal m n) -> None
| _ -> (
match (is_constant e, is_constant f) with
(* orient equation to discretionarily prefer term that is constant or
compares smaller as class representative *)
| true, false -> extend ~trm:f ~rep:e s
| false, true -> extend ~trm:e ~rep:f s
| _ ->
let trm, rep = if Term.compare e f > 0 then (e, f) else (f, e) in
extend ~trm ~rep s )
in
let concat_size args =
Vector.fold_until args ~init:Term.zero
~f:(fun sum m ->
match (m : Term.t) with
| Ap2 (Memory, siz, _) -> Continue (Term.add siz sum)
| _ -> Stop None )
~finish:(fun _ -> None)
in
match ((e : Term.t), (f : Term.t)) with
| (Add _ | Mul _ | Integer _), _ | _, (Add _ | Mul _ | Integer _) -> (
let e_f = Term.sub e f in
match Term.solve_zero_eq e_f with
| Some (trm, rep) -> extend ~trm ~rep s
| None -> solve_uninterp e_f Term.zero )
| ApN (Concat, ms), ApN (Concat, ns) -> (
match (concat_size ms, concat_size ns) with
| Some p, Some q -> solve_uninterp e f >>= solve_ p q
| _ -> solve_uninterp e f )
| Ap2 (Memory, m, _), ApN (Concat, ns)
|ApN (Concat, ns), Ap2 (Memory, m, _) -> (
match concat_size ns with
| Some p -> solve_uninterp e f >>= solve_ p m
| _ -> solve_uninterp e f )
| _ -> solve_uninterp e f
let solve ~us ~xs e f =
[%Trace.call fun {pf} -> pf "%a@ %a" Term.pp e Term.pp f]
;
let rec solve_ e f s =
let extend ~trm ~rep (us, xs, s) =
Some (us, xs, Subst.compose1 ~key:trm ~data:rep s)
in
let fresh name (us, xs, s) =
let x, us = Var.fresh name ~wrt:us in
let xs = Set.add xs x in
(Term.var x, (us, xs, s))
in
let solve_uninterp e f =
match ((e : Term.t), (f : Term.t)) with
| Integer {data= m}, Integer {data= n} when not (Z.equal m n) -> None
| _ -> (
match (is_constant e, is_constant f) with
(* orient equation to discretionarily prefer term that is constant
or compares smaller as class representative *)
| true, false -> extend ~trm:f ~rep:e s
| false, true -> extend ~trm:e ~rep:f s
| _ ->
let trm, rep =
if Term.compare e f > 0 then (e, f) else (f, e)
in
extend ~trm ~rep s )
in
let concat_size args =
Vector.fold_until args ~init:Term.zero
~f:(fun sum m ->
match (m : Term.t) with
| Ap2 (Memory, siz, _) -> Continue (Term.add siz sum)
| _ -> Stop None )
~finish:(fun _ -> None)
in
match ((e : Term.t), (f : Term.t)) with
| (Add _ | Mul _ | Integer _), _ | _, (Add _ | Mul _ | Integer _) -> (
let e_f = Term.sub e f in
match Term.solve_zero_eq e_f with
| Some (trm, rep) -> extend ~trm ~rep s
| None -> solve_uninterp e_f Term.zero )
| ApN (Concat, ms), ApN (Concat, ns) -> (
match (concat_size ms, concat_size ns) with
| Some p, Some q -> solve_uninterp e f >>= solve_ p q
| _ -> solve_uninterp e f )
| Ap2 (Memory, m, _), ApN (Concat, ns)
|ApN (Concat, ns), Ap2 (Memory, m, _) -> (
match concat_size ns with
| Some p -> solve_uninterp e f >>= solve_ p m
| _ -> solve_uninterp e f )
| _ -> solve_uninterp e f
in
(solve_ e f (us, xs, Subst.empty) >>| fun (_, xs, s) -> (xs, s))
|>
[%Trace.retn fun {pf} ->

Loading…
Cancel
Save