@ -1464,35 +1464,21 @@ let prop_is_emp p = match p.sigma with
(* * {2 Functions for changing and generating propositions} *)
(* * Construct an atom. *)
let mk_atom atom =
Config . run_with_abs_val_equal_zero ( fun () -> atom_normalize Sil . sub_empty atom ) ()
(* * Sil.Construct a disequality. *)
let mk_neq e1 e2 =
Config . run_with_abs_val_equal_zero
( fun () ->
let ne1 = exp_normalize Sil . sub_empty e1 in
let ne2 = exp_normalize Sil . sub_empty e2 in
atom_normalize Sil . sub_empty ( Sil . Aneq ( ne1 , ne2 ) ) ) ()
let mk_neq e1 e2 = mk_atom ( Aneq ( e1 , e2 ) )
(* * Sil.Construct an equality. *)
let mk_eq e1 e2 =
Config . run_with_abs_val_equal_zero
( fun () ->
let ne1 = exp_normalize Sil . sub_empty e1 in
let ne2 = exp_normalize Sil . sub_empty e2 in
atom_normalize Sil . sub_empty ( Sil . Aeq ( ne1 , ne2 ) ) ) ()
let mk_eq e1 e2 = mk_atom ( Aeq ( e1 , e2 ) )
(* * Construct a pred. *)
let mk_pred a e =
Config . run_with_abs_val_equal_zero
( fun () ->
let ne = exp_normalize Sil . sub_empty e in
atom_normalize Sil . sub_empty ( Apred ( a , ne ) ) ) ()
let mk_pred a e = mk_atom ( Apred ( a , e ) )
(* * Construct a negated pred. *)
let mk_npred a e =
Config . run_with_abs_val_equal_zero
( fun () ->
let ne = exp_normalize Sil . sub_empty e in
atom_normalize Sil . sub_empty ( Anpred ( a , ne ) ) ) ()
let mk_npred a e = mk_atom ( Anpred ( a , e ) )
(* * Construct a points-to predicate for a single program variable.
If [ expand_structs ] is true , initialize the fields of structs with fresh variables . * )