[sledge] Combine normalization and carrier extension when adding equalities

Summary:
The normalization and then extension of the carrier can be combined
into one pass. This weakens the property that this normalization needs
to achieve, which yields a small simplification, and combining the
passes is a minor optimization.

Reviewed By: jvillard

Differential Revision: D26400406

fbshipit-source-id: 8a3cbb2de
master
Josh Berdine 4 years ago committed by Facebook GitHub Bot
parent 4bc33ba928
commit bba67169ec

@ -472,10 +472,6 @@ let rec canon x a =
(* Extending the carrier ==================================================*) (* Extending the carrier ==================================================*)
let add_to_cls elt rep cls =
Trm.Map.update rep cls ~f:(fun elts0 ->
Cls.add elt (Option.value elts0 ~default:Cls.empty) )
let add_use_of sup sub use = let add_use_of sup sub use =
Trm.Map.update sub use ~f:(fun u -> Trm.Map.update sub use ~f:(fun u ->
Use.add sup (Option.value ~default:Use.empty u) ) Use.add sup (Option.value ~default:Use.empty u) )
@ -483,33 +479,15 @@ let add_use_of sup sub use =
let add_uses_of a use = let add_uses_of a use =
Iter.fold ~f:(add_use_of a) (Theory.solvable_trms a) use Iter.fold ~f:(add_use_of a) (Theory.solvable_trms a) use
let add_eq v ~rep:r x = (** [canon_extend_ a x] is [a', x'] where [x'] is [x] extended so that
[%trace] [a' = canon x' a]. This finds [a] in rep or recurses and then canonizes
~call:(fun {pf} -> pf "@ @[%a ↦ %a@]@ %a" Trm.pp v Trm.pp r pp_raw x) if absent, adding the canonized term [a'] and its subterms. *)
~retn:(fun {pf} (_, x') -> pf "%a" pp_raw x') let rec canon_extend_ a x =
@@ fun () ->
match Trm.Map.find_or_add v r x.rep with
| `Found v' ->
(* v ↦ v' already, so v' and r are congruent but not (yet) equal,
therefore add pending v' = r *)
let pnd = (v', r) :: x.pnd in
(v', {x with pnd})
| `Added rep ->
(* v ↦ r newly added, so can directly add v = r *)
let cls = add_to_cls v r x.cls in
let use = add_uses_of v x.use in
(r, {x with rep; cls; use})
(** [find_extend_ a x] is [a', x'] where [x'] is [x] extended so that
[a' = find_exn a x']. This adds [a] and all its subterms, normalizes [a]
to [a'], and uses the result to find equalities needed to reestablish
congruence closure. *)
let rec find_extend_ a x =
[%trace] [%trace]
~call:(fun {pf} -> pf "@ %a@ | %a" Trm.pp a pp_raw x) ~call:(fun {pf} -> pf "@ %a@ | %a" Trm.pp a pp_raw x)
~retn:(fun {pf} (a', x') -> ~retn:(fun {pf} (a', x') ->
pf "%a@ %a" Trm.pp a' pp_diff (x, x') ; pf "%a@ %a" Trm.pp a' pp_diff (x, x') ;
assert (Trm.equal a' (find_check a x')) ) assert (Trm.equal a' (canon x' a)) )
@@ fun () -> @@ fun () ->
match Theory.classify a with match Theory.classify a with
| InterpAtom -> (a, x) | InterpAtom -> (a, x)
@ -518,37 +496,34 @@ let rec find_extend_ a x =
| `Found a' -> (a', x) | `Found a' -> (a', x)
| `Added rep -> (a, {x with rep}) ) | `Added rep -> (a, {x with rep}) )
| InterpApp -> | InterpApp ->
if Trm.Map.mem a x.rep then (a, x) if Trm.Map.mem a x.rep then
else Trm.fold_map ~f:find_extend_ a x (* optimize: a already a rep so don't need to consider subterms *)
(a, x)
else Trm.fold_map ~f:canon_extend_ a x
| UninterpApp -> ( | UninterpApp -> (
match Trm.Map.find_or_add a a x.rep with match Trm.Map.find a x.rep with
| `Found a' -> | Some a' ->
(* a already has rep a' *) (* a already has rep a' *)
(a', x) (a', x)
| None -> (
(* norm wrt rep and add subterms *)
let a_norm, x = Trm.fold_map ~f:canon_extend_ a x in
match Trm.Map.find_or_add a_norm a_norm x.rep with
| `Found a' ->
(* a_norm already equal to a' *)
(a', x)
| `Added rep -> | `Added rep ->
(* a now its own rep *) (* a_norm newly added *)
let use = add_uses_of a x.use in let use = add_uses_of a_norm x.use in
let x = {x with rep; use} in let x = {x with rep; use} in
(* add subterms and norm a using (old) reps *) (a_norm, x) ) )
let a_norm, x = Trm.fold_map ~f:find_extend_ a x in
if Trm.equal a_norm a then (* a already normalized *)
(a_norm, x)
else add_eq a_norm ~rep:a x )
let find_extend a x = (** normalize and add a term to the carrier *)
let canon_extend a x =
[%trace] [%trace]
~call:(fun {pf} -> pf "@ %a@ %a" Trm.pp a pp_raw x) ~call:(fun {pf} -> pf "@ %a@ | %a" Trm.pp a pp_raw x)
~retn:(fun {pf} (a', x') -> pf "%a@ %a" Trm.pp a' pp_diff (x, x')) ~retn:(fun {pf} (a', x') -> pf "%a@ %a" Trm.pp a' pp_diff (x, x'))
@@ fun () -> find_extend_ a x @@ fun () -> canon_extend_ a x
(** add a term to the carrier *)
let extend a x =
[%trace]
~call:(fun {pf} -> pf "@ %a@ | %a" Trm.pp a pp x)
~retn:(fun {pf} x' ->
pf "%a" pp_diff (x, x') ;
pre_invariant x' )
@@ fun () -> snd (find_extend a x)
(* Propagation ============================================================*) (* Propagation ============================================================*)
@ -691,9 +666,8 @@ let and_eq ~wrt a b x =
@@ fun () -> @@ fun () ->
if not x.sat then x if not x.sat then x
else else
let a' = canon x a in let a', x = canon_extend a x in
let b' = canon x b in let b', x = canon_extend b x in
let x = extend a' (extend b' x) in
if Trm.equal a' b' then x else merge ~wrt a' b' x if Trm.equal a' b' then x else merge ~wrt a' b' x
let extract_xs r = (r.xs, {r with xs= Var.Set.empty}) let extract_xs r = (r.xs, {r with xs= Var.Set.empty})

Loading…
Cancel
Save