|
|
@ -25,6 +25,18 @@ and disjunction = starjunction list
|
|
|
|
|
|
|
|
|
|
|
|
type t = starjunction [@@deriving compare, equal, sexp]
|
|
|
|
type t = starjunction [@@deriving compare, equal, sexp]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
(** Basic values *)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
let emp =
|
|
|
|
|
|
|
|
{ us= Var.Set.empty
|
|
|
|
|
|
|
|
; xs= Var.Set.empty
|
|
|
|
|
|
|
|
; cong= Equality.true_
|
|
|
|
|
|
|
|
; pure= []
|
|
|
|
|
|
|
|
; heap= []
|
|
|
|
|
|
|
|
; djns= [] }
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
let false_ us = {emp with us; djns= [[]]}
|
|
|
|
|
|
|
|
|
|
|
|
(** Traversals *)
|
|
|
|
(** Traversals *)
|
|
|
|
|
|
|
|
|
|
|
|
let map_seg ~f h =
|
|
|
|
let map_seg ~f h =
|
|
|
@ -39,22 +51,26 @@ let map_seg ~f h =
|
|
|
|
then h
|
|
|
|
then h
|
|
|
|
else {loc; bas; len; siz; arr}
|
|
|
|
else {loc; bas; len; siz; arr}
|
|
|
|
|
|
|
|
|
|
|
|
let map ~f_sjn ~f_cong ~f_trm ({us= _; xs= _; cong; pure; heap; djns} as q)
|
|
|
|
let map ~f_sjn ~f_cong ~f_trm ({us; xs= _; cong; pure; heap; djns} as q) =
|
|
|
|
=
|
|
|
|
let exception Unsat in
|
|
|
|
let cong = f_cong cong in
|
|
|
|
try
|
|
|
|
let pure =
|
|
|
|
let cong = f_cong cong in
|
|
|
|
List.filter_map_preserving_phys_equal pure ~f:(fun e ->
|
|
|
|
let pure =
|
|
|
|
let e' = f_trm e in
|
|
|
|
List.filter_map_preserving_phys_equal pure ~f:(fun e ->
|
|
|
|
if Term.is_true e' then None else Some e' )
|
|
|
|
let e' = f_trm e in
|
|
|
|
in
|
|
|
|
if Term.is_false e' then raise Unsat
|
|
|
|
let heap = List.map_preserving_phys_equal heap ~f:(map_seg ~f:f_trm) in
|
|
|
|
else if Term.is_true e' then None
|
|
|
|
let djns =
|
|
|
|
else Some e' )
|
|
|
|
List.map_preserving_phys_equal djns
|
|
|
|
in
|
|
|
|
~f:(List.map_preserving_phys_equal ~f:f_sjn)
|
|
|
|
let heap = List.map_preserving_phys_equal heap ~f:(map_seg ~f:f_trm) in
|
|
|
|
in
|
|
|
|
let djns =
|
|
|
|
if cong == q.cong && pure == q.pure && heap == q.heap && djns == q.djns
|
|
|
|
List.map_preserving_phys_equal djns
|
|
|
|
then q
|
|
|
|
~f:(List.map_preserving_phys_equal ~f:f_sjn)
|
|
|
|
else {q with cong; pure; heap; djns}
|
|
|
|
in
|
|
|
|
|
|
|
|
if cong == q.cong && pure == q.pure && heap == q.heap && djns == q.djns
|
|
|
|
|
|
|
|
then q
|
|
|
|
|
|
|
|
else {q with cong; pure; heap; djns}
|
|
|
|
|
|
|
|
with Unsat -> false_ us
|
|
|
|
|
|
|
|
|
|
|
|
let fold_terms_seg {loc; bas; len; siz; arr} ~init ~f =
|
|
|
|
let fold_terms_seg {loc; bas; len; siz; arr} ~init ~f =
|
|
|
|
let f b s = f s b in
|
|
|
|
let f b s = f s b in
|
|
|
@ -396,17 +412,6 @@ let elim_exists xs q =
|
|
|
|
|
|
|
|
|
|
|
|
(** Construct *)
|
|
|
|
(** Construct *)
|
|
|
|
|
|
|
|
|
|
|
|
let emp =
|
|
|
|
|
|
|
|
{ us= Var.Set.empty
|
|
|
|
|
|
|
|
; xs= Var.Set.empty
|
|
|
|
|
|
|
|
; cong= Equality.true_
|
|
|
|
|
|
|
|
; pure= []
|
|
|
|
|
|
|
|
; heap= []
|
|
|
|
|
|
|
|
; djns= [] }
|
|
|
|
|
|
|
|
|> check invariant
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
let false_ us = {emp with us; djns= [[]]} |> check invariant
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
(** conjoin an equality relation assuming vocabulary is compatible *)
|
|
|
|
(** conjoin an equality relation assuming vocabulary is compatible *)
|
|
|
|
let and_cong_ cong q =
|
|
|
|
let and_cong_ cong q =
|
|
|
|
assert (Set.is_subset (Equality.fv cong) ~of_:q.us) ;
|
|
|
|
assert (Set.is_subset (Equality.fv cong) ~of_:q.us) ;
|
|
|
|