@ -577,8 +577,8 @@ type 'a zom = Zero | One of 'a | Many
(* try to solve [p = q] such that [fv ( p - q ) ⊆ us ∪ xs] and [p - q] has at
most one maximal solvable subterm , [ kill ] , where [ fv kill ⊈ us ] ; solve [ p
= q ] for [ kill ] ; extend subst mapping [ kill ] to the solution * )
let solve_poly_eq us p q subst =
let diff = Subst. norm subst ( Term . sub p q ) in
let solve_poly_eq us p ' q ' subst =
let diff = Term. sub p' q' in
let max_solvables_not_ito_us =
fold_max_solvables diff ~ init : Zero ~ f : ( fun solvable_subterm -> function
| Many -> Many
@ -592,16 +592,17 @@ let solve_poly_eq us p q subst =
Subst . compose1 ~ key : kill ~ data : keep subst
| Many | Zero -> None
let solve_interp_eq us us_xs e ( cls , subst ) =
let solve_interp_eq us us_xs e ' ( cls , subst ) =
[ % Trace . call fun { pf } ->
pf " trm: @[%a@]@ cls: @[%a@]@ subst: @[%a@] " Term . pp e pp_cls cls
pf " trm: @[%a@]@ cls: @[%a@]@ subst: @[%a@] " Term . pp e ' pp_cls cls
Subst . pp subst ]
;
( if not ( Set . is_subset ( Term . fv e ) ~ of_ : us_xs ) then None
( if not ( Set . is_subset ( Term . fv e ' ) ~ of_ : us_xs ) then None
else
List . find_map cls ~ f : ( fun f ->
if not ( Set . is_subset ( Term . fv f ) ~ of_ : us_xs ) then None
else solve_poly_eq us e f subst ) )
let f' = Subst . norm subst f in
if not ( Set . is_subset ( Term . fv f' ) ~ of_ : us_xs ) then None
else solve_poly_eq us e' f' subst ) )
| >
[ % Trace . retn fun { pf } subst' ->
pf " @[%a@] " Subst . pp_diff ( subst , Option . value subst' ~ default : subst ) ;
@ -627,12 +628,9 @@ let rec solve_interp_eqs us us_xs (cls, subst) =
let trm' = Subst . norm subst trm in
match classify trm' with
| Interpreted -> (
match solve_interp_eq us us_xs trm' ( cls' , subst ) with
| None -> (
match solve_interp_eq us us_xs trm' ( cls , subst ) with
| None -> solve_interp_eqs_ ( trm' :: cls' ) ( cls , subst )
| Some subst -> solve_interp_eqs_ cls' ( cls , subst ) )
| Some subst -> solve_interp_eqs_ cls' ( cls , subst ) )
| Some subst -> solve_interp_eqs_ cls' ( cls , subst )
| None -> solve_interp_eqs_ ( trm' :: cls' ) ( cls , subst ) )
| _ -> solve_interp_eqs_ ( trm' :: cls' ) ( cls , subst ) )
in
let cls' , subst' = solve_interp_eqs_ [] ( cls , subst ) in