[sledge] Strengthen normalization of conditional terms

Summary:
Apply normalization to conditional terms similar to conditional
formulas: evaluate terms with literal conditions, equal branches, and
ensure the condition is not negative.

Reviewed By: jvillard

Differential Revision: D24532344

fbshipit-source-id: 7818dc496
master
Josh Berdine 4 years ago committed by Facebook GitHub Bot
parent b1b79a3fed
commit cc3f76b0ad

@ -70,3 +70,7 @@ val map_trms : t -> f:(Trm.t -> Trm.t) -> t
(** Traverse *) (** Traverse *)
val vars : t -> Var.t iter val vars : t -> Var.t iter
(** Query *)
val is_negative : t -> bool

@ -51,6 +51,18 @@ let pp = ppx (fun _ -> None)
* and formulas stratified below conditional terms and then expressions. * and formulas stratified below conditional terms and then expressions.
*) *)
let _Ite cnd thn els =
match (cnd : Fml.t) with
(* (tt ? t : e) ==> t *)
| Tt -> thn
(* (ff ? t : e) ==> e *)
| Not Tt -> els
(* (c ? t : t) ==> t *)
| _ when equal_cnd thn els -> thn
(* (¬c ? t : e) ==> (c ? e : t) *)
| _ when Fml.is_negative cnd -> `Ite (Fml.not_ cnd, els, thn)
| _ -> `Ite (cnd, thn, els)
(** Map a unary function on terms over the leaves of a conditional term, (** Map a unary function on terms over the leaves of a conditional term,
rebuilding the tree of conditionals with the supplied ite construction rebuilding the tree of conditionals with the supplied ite construction
function. *) function. *)
@ -67,7 +79,7 @@ let rec map_cnd : (fml -> 'a -> 'a -> 'a) -> (trm -> 'a) -> cnd -> 'a =
let embed_into_cnd : exp -> cnd = function let embed_into_cnd : exp -> cnd = function
| #cnd as c -> c | #cnd as c -> c
(* p ==> (p ? 1 : 0) *) (* p ==> (p ? 1 : 0) *)
| `Fml fml -> `Ite (fml, `Trm Trm.one, `Trm Trm.zero) | `Fml fml -> _Ite fml (`Trm Trm.one) (`Trm Trm.zero)
(** Project out a formula that is embedded into a conditional term. (** Project out a formula that is embedded into a conditional term.
@ -89,8 +101,8 @@ let ite : fml -> exp -> exp -> exp =
match (thn, els) with match (thn, els) with
| `Fml pos, `Fml neg -> `Fml (cond cnd pos neg) | `Fml pos, `Fml neg -> `Fml (cond cnd pos neg)
| _ -> ( | _ -> (
let c = `Ite (cnd, embed_into_cnd thn, embed_into_cnd els) in let c = _Ite cnd (embed_into_cnd thn) (embed_into_cnd els) in
match project_out_fml c with Some f -> `Fml f | None -> c ) match project_out_fml c with Some f -> `Fml f | None -> (c :> exp) )
(** Embed a conditional term into a formula (associating 0 with false and (** Embed a conditional term into a formula (associating 0 with false and
non-0 with true, lifted over the tree mapping conditional terms to non-0 with true, lifted over the tree mapping conditional terms to
@ -303,7 +315,7 @@ module Term = struct
let thn' = map_vars_c ~f thn in let thn' = map_vars_c ~f thn in
let els' = map_vars_c ~f els in let els' = map_vars_c ~f els in
if cnd' == cnd && thn' == thn && els' == els then c if cnd' == cnd && thn' == thn && els' == els then c
else `Ite (cnd', thn', els') else _Ite cnd' thn' els'
| `Trm t -> | `Trm t ->
let t' = Trm.map_vars ~f t in let t' = Trm.map_vars ~f t in
if t' == t then c else `Trm t' if t' == t then c else `Trm t'

@ -50,6 +50,7 @@ module type FORMULA = sig
val _Lit : Predsym.t -> trm array -> t val _Lit : Predsym.t -> trm array -> t
val and_ : t -> t -> t val and_ : t -> t -> t
val or_ : t -> t -> t val or_ : t -> t -> t
val is_negative : t -> bool
val trms : t -> trm iter val trms : t -> trm iter
end end

@ -420,13 +420,14 @@ let%test_module _ =
{sat= true; {sat= true;
rep= [[%x_5 1]; rep= [[%x_5 1];
[%y_6 ]; [%y_6 ];
[(%x_5 0) -1]; [(%x_5 = 0) 0];
[(%y_6 0) -1]; [(%y_6 = 0) 0];
[-1 ]; [-1 ];
[0 ]]} |}] [0 ]]} |}]
let%test _ = implies_eq r14 a (Formula.inject Formula.tt) let%test _ = implies_eq r14 a (Formula.inject Formula.tt)
let%test _ = implies_eq r14 b (Formula.inject Formula.tt) (* incomplete *)
let%test _ = not (implies_eq r14 b (Formula.inject Formula.tt))
let b = Formula.inject (Formula.dq x !0) let b = Formula.inject (Formula.dq x !0)
let r15 = of_eqs [(b, b); (x, !1)] let r15 = of_eqs [(b, b); (x, !1)]

Loading…
Cancel
Save