@ -450,38 +450,10 @@ type exp = [cnd | `Fml of fml] [@@deriving compare, equal, sexp]
(* * Variable terms *)
(* * Variable terms *)
module Var : sig
module Var : sig
type t = private trm [ @@ deriving compare , equal , sexp ]
include Ses . Var_intf . VAR with type t = private trm
type strength = t -> [ ` Universal | ` Existential | ` Anonymous ] option
val ppx : strength -> t pp
val pp : t pp
module Map : Map . S with type key := t
module Set : sig
include NS . Set . S with type elt := t
val sexp_of_t : t -> Sexp . t
val t_of_sexp : Sexp . t -> t
val ppx : strength -> t pp
val pp : t pp
val pp_xs : t pp
end
val of_ : trm -> t
val of_ : trm -> t
val of_exp : exp -> t option
val of_exp : exp -> t option
val program : name : string -> global : bool -> t
val fresh : string -> wrt : Set . t -> t * Set . t
val identified : name : string -> id : int -> t
(* * Variable with the given [id]. Variables are compared by [id] alone,
[ name ] is used only for printing . The only way to ensure [ identified ]
variables do not clash with [ fresh ] variables is to pass the
[ identified ] variables to [ fresh ] in [ wrt ] :
[ Var . fresh name ~ wrt : ( Var . Set . of_ ( Var . identified ~ name ~ id ) ) ] . * )
val id : t -> int
val name : t -> string
module Subst : sig
module Subst : sig
type var := t
type var := t
@ -502,71 +474,28 @@ module Var : sig
end = struct
end = struct
module T = struct
module T = struct
type t = trm [ @@ deriving compare , equal , sexp ]
type t = trm [ @@ deriving compare , equal , sexp ]
type strength = t -> [ ` Universal | ` Existential | ` Anonymous ] option
let invariant ( x : t ) =
let @ () = Invariant . invariant [ % here ] x [ % sexp_of : t ] in
match x with
| Var _ -> ()
| _ -> fail " non-var: %a " Sexp . pp_hum ( sexp_of_trm x ) ()
let ppx strength fs v =
let pf fmt = pp_boxed fs fmt in
match ( v : trm ) with
| Var { name ; id = - 1 } -> Trace . pp_styled ` Bold " %@%s " fs name
| Var { name ; id = 0 } -> Trace . pp_styled ` Bold " %%%s " fs name
| Var { name ; id } -> (
match strength v with
| None -> pf " %%%s_%d " name id
| Some ` Universal -> Trace . pp_styled ` Bold " %%%s_%d " fs name id
| Some ` Existential -> Trace . pp_styled ` Cyan " %%%s_%d " fs name id
| Some ` Anonymous -> Trace . pp_styled ` Cyan " _ " fs )
| x -> violates invariant x
let pp = ppx ( fun _ -> None )
end
end
include T
let invariant ( x : trm ) =
let @ () = Invariant . invariant [ % here ] x [ % sexp_of : trm ] in
match x with
| Var _ -> ()
| _ -> fail " non-var: %a " Sexp . pp_hum ( sexp_of_trm x ) ()
module Map = struct
include Ses . Var0 . Make ( struct
include Map . Make ( T )
include T
include Provide_of_sexp ( T )
end
module Set = struct
let make ~ id ~ name = Var { id ; name } | > check invariant
include Set . Make ( T )
let id = function Var v -> v . id | x -> violates invariant x
include Provide_of_sexp ( T )
let name = function Var v -> v . name | x -> violates invariant x
end )
let ppx strength vs = pp ( T . ppx strength ) vs
let of_ v = v | > check invariant
let pp vs = pp T . pp vs
let pp_xs fs xs =
if not ( is_empty xs ) then
Format . fprintf fs " @<2>∃ @[%a@] .@;<1 2> " pp xs
end
(* access *)
let id = function Var v -> v . id | x -> violates invariant x
let name = function Var v -> v . name | x -> violates invariant x
(* construct *)
let of_ = function Var _ as v -> v | _ -> invalid_arg " Var.of_ "
let of_exp = function
let of_exp = function
| ` Trm ( Var _ as v ) -> Some ( v | > check invariant )
| ` Trm ( Var _ as v ) -> Some ( v | > check invariant )
| _ -> None
| _ -> None
let program ~ name ~ global = Var { name ; id = ( if global then - 1 else 0 ) }
let fresh name ~ wrt =
let max = match Set . max_elt wrt with None -> 0 | Some max -> id max in
let x' = Var { name ; id = max + 1 } in
( x' , Set . add wrt x' )
let identified ~ name ~ id = Var { name ; id }
(*
(*
* Renamings
* Renamings
* )
* )