@ -655,6 +655,15 @@ let null = integer Z.zero Typ.ptr
let bool b = integer ( Z . of_bool b ) Typ . bool
let float data = Float { data } | > check invariant
let zero ( typ : Typ . t ) =
match typ with Float _ -> float " 0 " | _ -> integer Z . zero typ
let one ( typ : Typ . t ) =
match typ with Float _ -> float " 1 " | _ -> integer Z . one typ
let minus_one ( typ : Typ . t ) =
match typ with Float _ -> float " -1 " | _ -> integer Z . minus_one typ
let simp_convert signed ( dst : Typ . t ) src arg =
match ( dst , arg ) with
| _ when Typ . equal dst src -> arg
@ -720,7 +729,7 @@ let sum_mul_const const sum =
let rec sum_to_exp typ sum =
match Qset . length sum with
| 0 -> integer Z . zero typ
| 0 -> zero typ
| 1 -> (
match Qset . min_elt sum with
| Some ( Integer _ , q ) -> rational q typ
@ -817,7 +826,7 @@ let rec simp_add_ typ es poly =
in
Qset . fold ~ f es ~ init : poly
let simp_add typ es = simp_add_ typ es ( integer Z . zero typ )
let simp_add typ es = simp_add_ typ es ( zero typ )
let simp_add2 typ e f = simp_add_ typ ( Sum . singleton e ) f
(* Products of indeterminants represented by multisets. A product ∏ᵢ xᵢ^nᵢ
@ -876,12 +885,12 @@ let simp_mul typ es =
if Q . equal Q . zero pwr then exp
else mul_pwr bas Q . ( pwr - one ) ( simp_mul2 typ bas exp )
in
let one = integer Z . one typ in
let one = one typ in
Qset . fold es ~ init : one ~ f : ( fun bas pwr exp ->
if Q . sign pwr > = 0 then mul_pwr bas pwr exp
else simp_div exp ( mul_pwr bas ( Q . neg pwr ) one ) )
let simp_negate typ x = simp_mul2 typ ( integer Z . minus_one typ ) x
let simp_negate typ x = simp_mul2 typ ( minus_one typ ) x
let simp_sub typ x y =
match ( x , y ) with
@ -1345,7 +1354,7 @@ let solve e f =
let d = rational ( Q . neg q ) typ in
let r = div n d in
Some ( Map . add_exn s ~ key : c ~ data : r )
| e_f -> solve_uninterp e_f ( integer Z . zero typ ) )
| e_f -> solve_uninterp e_f ( zero typ ) )
| Concat { args = ms } , Concat { args = ns } -> (
match ( concat_size ms , concat_size ns ) with
| Some p , Some q -> solve_uninterp e f > > = solve_ p q