|
|
@ -1005,6 +1005,13 @@ module MakePolynomial (S : NonNegativeSymbol) = struct
|
|
|
|
|
|
|
|
|
|
|
|
let increasing_union ~f m1 m2 = union (fun _ v1 v2 -> Some (f v1 v2)) m1 m2
|
|
|
|
let increasing_union ~f m1 m2 = union (fun _ v1 v2 -> Some (f v1 v2)) m1 m2
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
let zip m1 m2 = merge (fun _ opt1 opt2 -> Some (opt1, opt2)) m1 m2
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
let fold_no_key m ~init ~f =
|
|
|
|
|
|
|
|
let f _k v acc = f acc v in
|
|
|
|
|
|
|
|
fold f m init
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
let le ~le_elt m1 m2 =
|
|
|
|
let le ~le_elt m1 m2 =
|
|
|
|
match
|
|
|
|
match
|
|
|
|
merge
|
|
|
|
merge
|
|
|
@ -1022,6 +1029,12 @@ module MakePolynomial (S : NonNegativeSymbol) = struct
|
|
|
|
true
|
|
|
|
true
|
|
|
|
| exception Exit ->
|
|
|
|
| exception Exit ->
|
|
|
|
false
|
|
|
|
false
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
let xcompare ~xcompare_elt ~lhs ~rhs =
|
|
|
|
|
|
|
|
(* TODO: avoid creating zipped map *)
|
|
|
|
|
|
|
|
zip lhs rhs
|
|
|
|
|
|
|
|
|> PartialOrder.container ~fold:fold_no_key ~xcompare_elt:(PartialOrder.of_opt ~xcompare_elt)
|
|
|
|
end
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
|
|
(** If x < y < z then
|
|
|
|
(** If x < y < z then
|
|
|
@ -1078,7 +1091,9 @@ module MakePolynomial (S : NonNegativeSymbol) = struct
|
|
|
|
|
|
|
|
|
|
|
|
let is_one : t -> bool = fun {const; terms} -> NonNegativeInt.is_one const && M.is_empty terms
|
|
|
|
let is_one : t -> bool = fun {const; terms} -> NonNegativeInt.is_one const && M.is_empty terms
|
|
|
|
|
|
|
|
|
|
|
|
let is_symbolic : t -> bool = fun {terms} -> not (M.is_empty terms)
|
|
|
|
let is_constant : t -> bool = fun {terms} -> M.is_empty terms
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
let is_symbolic : t -> bool = fun p -> not (is_constant p)
|
|
|
|
|
|
|
|
|
|
|
|
let rec plus : t -> t -> t =
|
|
|
|
let rec plus : t -> t -> t =
|
|
|
|
fun p1 p2 ->
|
|
|
|
fun p1 p2 ->
|
|
|
@ -1132,6 +1147,14 @@ module MakePolynomial (S : NonNegativeSymbol) = struct
|
|
|
|
NonNegativeInt.( <= ) ~lhs:lhs.const ~rhs:rhs.const && M.le ~le_elt:( <= ) lhs.terms rhs.terms
|
|
|
|
NonNegativeInt.( <= ) ~lhs:lhs.const ~rhs:rhs.const && M.le ~le_elt:( <= ) lhs.terms rhs.terms
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
let rec xcompare ~lhs ~rhs =
|
|
|
|
|
|
|
|
let cmp_const =
|
|
|
|
|
|
|
|
PartialOrder.of_compare ~compare:NonNegativeInt.compare ~lhs:lhs.const ~rhs:rhs.const
|
|
|
|
|
|
|
|
in
|
|
|
|
|
|
|
|
let cmp_terms = M.xcompare ~xcompare_elt:xcompare ~lhs:lhs.terms ~rhs:rhs.terms in
|
|
|
|
|
|
|
|
PartialOrder.join cmp_const cmp_terms
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
(* Possible optimization for later: x join x^2 = x^2 instead of x + x^2 *)
|
|
|
|
(* Possible optimization for later: x join x^2 = x^2 instead of x + x^2 *)
|
|
|
|
let rec join : t -> t -> t =
|
|
|
|
let rec join : t -> t -> t =
|
|
|
|
fun p1 p2 ->
|
|
|
|
fun p1 p2 ->
|
|
|
@ -1141,11 +1164,15 @@ module MakePolynomial (S : NonNegativeSymbol) = struct
|
|
|
|
|
|
|
|
|
|
|
|
(* assumes symbols are not comparable *)
|
|
|
|
(* assumes symbols are not comparable *)
|
|
|
|
(* TODO: improve this for comparable symbols *)
|
|
|
|
(* TODO: improve this for comparable symbols *)
|
|
|
|
let min : t -> t -> t =
|
|
|
|
let min_default_left : t -> t -> t =
|
|
|
|
fun p1 p2 ->
|
|
|
|
fun p1 p2 ->
|
|
|
|
if ( <= ) ~lhs:p1 ~rhs:p2 then p1
|
|
|
|
match xcompare ~lhs:p1 ~rhs:p2 with
|
|
|
|
else (* either can't decide which one is smaller or p2 is smaller *)
|
|
|
|
| `Equal | `LeftSmallerThanRight ->
|
|
|
|
|
|
|
|
p1
|
|
|
|
|
|
|
|
| `RightSmallerThanLeft ->
|
|
|
|
p2
|
|
|
|
p2
|
|
|
|
|
|
|
|
| `NotComparable ->
|
|
|
|
|
|
|
|
if is_constant p1 then p1 else if is_constant p2 then p2 else p1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
let widen : prev:t -> next:t -> num_iters:int -> t =
|
|
|
|
let widen : prev:t -> next:t -> num_iters:int -> t =
|
|
|
@ -1233,12 +1260,12 @@ module NonNegativePolynomial = struct
|
|
|
|
|
|
|
|
|
|
|
|
let mult = top_lifted_increasing ~f:NonNegativeNonTopPolynomial.mult
|
|
|
|
let mult = top_lifted_increasing ~f:NonNegativeNonTopPolynomial.mult
|
|
|
|
|
|
|
|
|
|
|
|
let min p1 p2 =
|
|
|
|
let min_default_left p1 p2 =
|
|
|
|
match (p1, p2) with
|
|
|
|
match (p1, p2) with
|
|
|
|
| Top, x | x, Top ->
|
|
|
|
| Top, x | x, Top ->
|
|
|
|
x
|
|
|
|
x
|
|
|
|
| NonTop p1, NonTop p2 ->
|
|
|
|
| NonTop p1, NonTop p2 ->
|
|
|
|
NonTop (NonNegativeNonTopPolynomial.min p1 p2)
|
|
|
|
NonTop (NonNegativeNonTopPolynomial.min_default_left p1 p2)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
let widen ~prev ~next ~num_iters:_ = if ( <= ) ~lhs:next ~rhs:prev then prev else Top
|
|
|
|
let widen ~prev ~next ~num_iters:_ = if ( <= ) ~lhs:next ~rhs:prev then prev else Top
|
|
|
|