@ -1220,7 +1220,6 @@ module Context = struct
Ses . Term . is_false ( Ses . Equality . normalize x ( f_to_ses b ) )
let normalize x e = ses_map ( Ses . Equality . normalize x ) e
let normalizef x e = f_ses_map ( Ses . Equality . normalize x ) e
let difference x e f = Term . d_int ( normalize x ( Term . sub e f ) )
let fold_terms ~ init x ~ f =
@ -1230,8 +1229,6 @@ module Context = struct
let class_of x e = List . map ~ f : of_ses ( Ses . Equality . class_of x ( to_ses e ) )
type classes = exp list Term . Map . t
let classes_of_ses clss =
Ses . Term . Map . fold clss ~ init : Term . Map . empty
~ f : ( fun ~ key : rep ~ data : cls clss ->
@ -1261,6 +1258,23 @@ module Context = struct
let pp_classes fs r = ppx_classes ( fun _ -> None ) fs ( classes r )
let ppx_diff var_strength fs parent_ctx fml ctx =
let clss = diff_classes ctx parent_ctx in
let first = Term . Map . is_empty clss in
if not first then Format . fprintf fs " " ;
ppx_classes var_strength fs clss ;
let fml =
let normalizef x e = f_ses_map ( Ses . Equality . normalize x ) e in
let fml' = normalizef ctx fml in
if Formula . is_true fml' then [] else [ fml' ]
in
List . pp
~ pre : ( if first then " @[ " else " @ @[@<2>∧ " )
" @ @<2>∧ "
( Formula . ppx var_strength )
fs fml ~ suf : " @] " ;
first && List . is_empty fml
(* Substs *)
module Subst = struct
@ -1294,7 +1308,6 @@ module Context = struct
type call =
| Normalize of t * exp
| Normalizef of t * fml
| And_formula of Var . Set . t * fml * t
| And_ of Var . Set . t * t * t
| OrN of Var . Set . t * t list
@ -1306,7 +1319,6 @@ module Context = struct
let replay c =
match call_of_sexp ( Sexp . of_string c ) with
| Normalize ( r , e ) -> normalize r e | > ignore
| Normalizef ( r , e ) -> normalizef r e | > ignore
| And_formula ( us , e , r ) -> and_formula us e r | > ignore
| And_ ( us , r , s ) -> and_ us r s | > ignore
| OrN ( us , rs ) -> orN us rs | > ignore
@ -1349,11 +1361,6 @@ module Context = struct
let normalize r e =
wrap normalize_tmr ( fun () -> normalize r e ) ( fun () -> Normalize ( r , e ) )
let normalizef r e =
wrap normalize_tmr
( fun () -> normalizef r e )
( fun () -> Normalizef ( r , e ) )
let and_formula us e r =
wrap and_formula_tmr
( fun () -> and_formula us e r )